Yi Wen, Yan Zi-Yi, Shi Meng-Qiong, Zhang Ying, Liu Jie, Yi Qian, Tang Hai-Ming, Liu Yi-Wen
the First College of Clinical Medical Science, China Thress Gorges University, Yichang Central People's Hospital Yichang 443000, China.
Basic Medical College of China Three Gorges University, Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy Yichang 443002, China.
Zhongguo Zhong Yao Za Zhi. 2025 Jan;50(2):480-497. doi: 10.19540/j.cnki.cjcmm.20240902.706.
This study investigated the effects and action mechanism of tannins from Galla chinensis cream(TGCC) on the skin wound of rat tail. Male Sprague Dawley(SD) rats were randomly divided into a control group, model group, model+low-dose TGCC(50 mg per rat) group, model+high-dose TGCC group(100 mg per rat), and model+TGC+FAK inhibitor(Y15) cream(100 mg+10 mg per rat) group, with 10 rats in each group. After the rat tail skin injury model was successfully constructed, in the treatment group, corresponding drugs were applied to the wound surface, while in the control and model groups, the same amount of cream base as the TGCC group was applied by the same method. Then, sterile gauze was wrapped around the wound edge, and these operations were performed three times a day for 28 consecutive days. The wound healing status at the third, seventh, eleventh, fourteenth, twenty-first, and twenty-eighth days was recorded, and the wound healing rate and healing time were calculated. On the day after the last dose of medication, rat serum and tail skin wound tissue were collected for analyzing the activities of serum alanine aminotransferase(ALT), aspartate aminotransferase(AST), creatinine(CREA), urea, reactive oxygen species(ROS), interferon gamma(IFN-γ), interleukin(IL)-1β, IL-6, IL-4, IL-10, tumor necrosis factor(TNF)-α, as well as catalase(CAT), glutathione(GSH), lactate dehydrogenase(LDH), malondialdehyde(MDA), myeloperoxidase(MPO), superoxide dismutase(SOD), total antioxidant capacity(T-AOC), platelet endothelial cell adhesion molecule-1(CD31), and leukocyte differentiation antigen 34(CD34) in the wound tissue of rat tail skin. Hematoxylin-eosin, Masson, and sirius red staining were used to observe the morphological changes in the wound tissue of rat tail skin. The thickness of the epidermis, the number of fibroblasts and blood vessels, and the contents of collagen fibers, typeⅠ collagen(COLⅠ), and COLⅢ were calculated. The mRNA expressions of keratin 10(KRT10), KRT14, vascular endothelial growth factor(VEGF), fibroblast growth factor(FGF), epidermal growth factor(EGF), CD31, CD34, matrix metallopeptidase-2(MMP-2), MMP-9, COLⅠ, COLⅢ, desmin, fibroblast specific protein 1(FSP1), IFN-γ, IL-1β, TNF-α, IL-4, IL-6, and IL-10 in skin wound tissue were determined by quantitative real-time polymerase chain reaction(PCR). Western blot was utilized to detect the protein expressions of KRT10, KRT14, VEGF, FGF, EGF, MMP-2, MMP-9, COLⅠ, COLⅢ, desmin, FSP1, focal adhesion kinase(FAK), phosphorylated focal adhesion kinase(p-FAK), phosphatidylin-ositol-3-kinase(PI3K), phosphorylated phosphatidylin-ositol-3-kinase(p-PI3K), protein kinase B(Akt), phosphorylated protein kinase B(p-Akt), mammalian target of rapamycin(mTOR), and phosphorylated mammalian target of rapamycin(p-mTOR). The results manifest that TGCC can dramatically elevate the healing rate of rat tail wounds and shorten wound healing time. Besides, it can reduce serum ROS levels, the contents of MDA, MPO, and LDH in the rat skin wound tissue, as well as the serum IFN-γ, IL-1β, IL-6, and TNF-α levels and the mRNA expression levels of IFN-γ, IL-1β, IL-6, and TNF-α in the skin wound tissue. It can elevate the activities of CAT, GSH, SOD, and T-AOC in wound tissue, the IL-4 and IL-10 contents in serum, and the mRNA expressions of IL-4 and IL-10 in the wound tissue. In addition, TGGC can inhibit inflammatory cell infiltration and increase the epidermal thickness, counts of fibroblasts and blood vessels, and contents of collagen fibers, COLⅠ, and COLⅢ. Besides, TGCC can elevate the mRNA and protein expressions of epidermal differentiation markers(KRT10 and KRT14), endothelial cell markers(CD31 and CD34), angiogenesis and fibroblast proliferation, differentiation markers(VEGF, FGF, EGF, COLⅠ, COLⅢ, desmin, and FSP1), reduce the mRNA and protein expressions of gelatinases(MMP-2 and MMP-9), and increase protein expressions of p-FAK, p-PI3K, p-Akt, p-mTOR, as well as ratios of p-FAK/FAK, p-PI3K/PI3K, p-Akt/Akt, and p-mTOR/mTOR. These results suggest that TGCC can significantly facilitate skin wound healing, and its mechanism may be related to the activation of the FAK/PI3K/Akt/mTOR signaling pathway, inhibition of inflammatory cell infiltration in skin wound tissue, elevation of epidermal thickness, counts of fibroblasts and vessels, and contents of collagen fiber, COLⅠ, and COLⅢ, and reduction of MMP-2 and MMP-9 expressions, thus accelerating wound healing.
本研究探讨了五倍子乳膏中单宁(TGCC)对大鼠尾部皮肤伤口的影响及其作用机制。将雄性Sprague Dawley(SD)大鼠随机分为对照组、模型组、模型+低剂量TGCC组(每只大鼠50 mg)、模型+高剂量TGCC组(每只大鼠100 mg)和模型+TGC+FAK抑制剂(Y15)乳膏组(每只大鼠100 mg+10 mg),每组10只大鼠。成功构建大鼠尾部皮肤损伤模型后,治疗组在伤口表面涂抹相应药物,而对照组和模型组则采用与TGCC组相同的方法涂抹等量的乳膏基质。然后,用无菌纱布包裹伤口边缘,每天进行3次,连续进行28天。记录第3、7、11、14、21和28天的伤口愈合情况,计算伤口愈合率和愈合时间。在最后一次给药后的第二天,收集大鼠血清和尾部皮肤伤口组织,分析血清丙氨酸氨基转移酶(ALT)、天冬氨酸氨基转移酶(AST)、肌酐(CREA)、尿素、活性氧(ROS)、干扰素γ(IFN-γ)、白细胞介素(IL)-1β、IL-6、IL-4、IL-10、肿瘤坏死因子(TNF)-α以及大鼠尾部皮肤伤口组织中过氧化氢酶(CAT)、谷胱甘肽(GSH)、乳酸脱氢酶(LDH)、丙二醛(MDA)、髓过氧化物酶(MPO)、超氧化物歧化酶(SOD)、总抗氧化能力(T-AOC)、血小板内皮细胞黏附分子-1(CD31)和白细胞分化抗原34(CD34)的活性。采用苏木精-伊红、Masson和天狼星红染色观察大鼠尾部皮肤伤口组织的形态学变化。计算表皮厚度、成纤维细胞和血管数量以及胶原纤维、Ⅰ型胶原(COLⅠ)和COLⅢ的含量。通过定量实时聚合酶链反应(PCR)测定皮肤伤口组织中角蛋白10(KRT10)、KRT14、血管内皮生长因子(VEGF)、成纤维细胞生长因子(FGF)、表皮生长因子(EGF)、CD31、CD34、基质金属蛋白酶-2(MMP-2)、MMP-9、COLⅠ、COLⅢ、结蛋白、成纤维细胞特异性蛋白1(FSP1)、IFN-γ、IL-1β、TNF-α、IL-4、IL-6和IL-10的mRNA表达。采用蛋白质免疫印迹法检测KRT10、KRT14、VEGF、FGF、EGF、MMP-2、MMP-9、COLⅠ、COLⅢ、结蛋白、FSP1、粘着斑激酶(FAK)、磷酸化粘着斑激酶(p-FAK)、磷脂酰肌醇-3-激酶(PI3K)、磷酸化磷脂酰肌醇-3-激酶(p-PI3K)、蛋白激酶B(Akt)、磷酸化蛋白激酶B(p-Akt)、雷帕霉素靶蛋白(mTOR)和磷酸化雷帕霉素靶蛋白(p-mTOR)的蛋白表达。结果表明,TGCC可显著提高大鼠尾部伤口的愈合率,缩短伤口愈合时间。此外,它可降低大鼠皮肤伤口组织中血清ROS水平、MDA、MPO和LDH的含量,以及血清IFN-γ、IL-1β、IL-6和TNF-α水平和皮肤伤口组织中IFN-γ、IL-1β、IL-6和TNF-α的mRNA表达水平。它可提高伤口组织中CAT、GSH、SOD和T-AOC的活性、血清中IL-4和IL-10的含量以及伤口组织中IL-4和IL-10的mRNA表达。此外,TGGC可抑制炎症细胞浸润,增加表皮厚度、成纤维细胞和血管数量以及胶原纤维、COLⅠ和COLⅢ的含量。此外,TGCC可提高表皮分化标志物(KRT10和KRT14)、内皮细胞标志物(CD31和CD34)、血管生成和成纤维细胞增殖、分化标志物(VEGF、FGF、EGF、COLⅠ、COLⅢ、结蛋白和FSP1)的mRNA和蛋白表达,降低明胶酶(MMP-2和MMP-9)的mRNA和蛋白表达,并增加p-FAK、p-PI3K、p-Akt、p-mTOR的蛋白表达以及p-FAK/FAK、p-PI3K/PI3K、p-Akt/Akt和p-mTOR/mTOR的比值。这些结果表明,TGCC可显著促进皮肤伤口愈合,其机制可能与激活FAK/PI3K/Akt/mTOR信号通路、抑制皮肤伤口组织中的炎症细胞浸润、增加表皮厚度、成纤维细胞和血管数量以及胶原纤维、COLⅠ和COLⅢ的含量以及降低MMP-2和MMP-9的表达有关,从而加速伤口愈合。