Lakic Lazar, Lawrie William I L, van Driel David, Stehouwer Lucas E A, Su Yao, Veldhorst Menno, Scappucci Giordano, Kuemmeth Ferdinand, Chatterjee Anasua
Center for Quantum Devices, Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark.
QuTech and Kavli Institute of Nanoscience, Delft University of Technology, Delft, The Netherlands.
Nat Mater. 2025 Apr;24(4):552-558. doi: 10.1038/s41563-024-02095-5. Epub 2025 Feb 10.
As one of the few group IV materials with the potential to host superconductor-semiconductor hybrid devices, planar germanium hosting proximitized quantum dots is a compelling platform to achieve and combine topological superconductivity with existing and new qubit modalities. We demonstrate a quantum dot in a Ge/SiGe heterostructure proximitized by a platinum germanosilicide (PtSiGe) superconducting lead, forming a superconducting lead-quantum dot-superconducting lead junction. We show tunability of the coupling strength between the quantum dot and the superconducting lead, and gate control of the ratio of charging energy and the induced gap, and we tune the ground state of the system between even and odd parity. Furthermore, we characterize critical magnetic field strengths, finding a critical out-of-plane field of 0.90 ± 0.04 T. Finally, we explore sub-gap spin splitting, observing rich physics in the resulting spectra, that we model using a zero-bandwidth model in the Yu-Shiba-Rusinov limit. Our findings open up the physics of alternative spin and superconducting qubits, and the physics of Josephson junction arrays, in germanium.
作为少数几种有潜力承载超导体 - 半导体混合器件的IV族材料之一,承载近邻量子点的平面锗是实现拓扑超导并将其与现有及新型量子比特模式相结合的极具吸引力的平台。我们展示了在由铂锗硅化物(PtSiGe)超导引线近邻化的Ge/SiGe异质结构中的一个量子点,形成了一个超导引线 - 量子点 - 超导引线结。我们展示了量子点与超导引线之间耦合强度的可调性,以及充电能量与诱导能隙之比的栅极控制,并且我们将系统的基态在偶宇称和奇宇称之间进行调节。此外,我们表征了临界磁场强度,发现面外临界场为0.90±0.04 T。最后,我们探索亚能隙自旋分裂,在所得光谱中观察到丰富的物理现象,我们使用Yu-Shiba-Rusinov极限下的零带宽模型对其进行建模。我们的发现开启了锗中替代自旋和超导量子比特的物理研究,以及约瑟夫森结阵列的物理研究。