Suppr超能文献

一个四量子位的锗量子处理器。

A four-qubit germanium quantum processor.

机构信息

QuTech and Kavli Institute of Nanoscience, Delft University of Technology, Delft, The Netherlands.

QuTech and Netherlands Organisation for Applied Scientific Research (TNO), Delft, The Netherlands.

出版信息

Nature. 2021 Mar;591(7851):580-585. doi: 10.1038/s41586-021-03332-6. Epub 2021 Mar 24.

Abstract

The prospect of building quantum circuits using advanced semiconductor manufacturing makes quantum dots an attractive platform for quantum information processing. Extensive studies of various materials have led to demonstrations of two-qubit logic in gallium arsenide, silicon and germanium. However, interconnecting larger numbers of qubits in semiconductor devices has remained a challenge. Here we demonstrate a four-qubit quantum processor based on hole spins in germanium quantum dots. Furthermore, we define the quantum dots in a two-by-two array and obtain controllable coupling along both directions. Qubit logic is implemented all-electrically and the exchange interaction can be pulsed to freely program one-qubit, two-qubit, three-qubit and four-qubit operations, resulting in a compact and highly connected circuit. We execute a quantum logic circuit that generates a four-qubit Greenberger-Horne-Zeilinger state and we obtain coherent evolution by incorporating dynamical decoupling. These results are a step towards quantum error correction and quantum simulation using quantum dots.

摘要

利用先进半导体制造技术构建量子电路的前景使得量子点成为量子信息处理的一个有吸引力的平台。对各种材料的广泛研究已经在砷化镓、硅和锗中展示了两量子比特逻辑。然而,在半导体器件中连接更多数量的量子比特仍然是一个挑战。在这里,我们展示了一种基于锗量子点中空穴自旋的四量子比特量子处理器。此外,我们在一个 2×2 的阵列中定义量子点,并在两个方向上获得可控制的耦合。量子比特逻辑完全通过电来实现,并且交换相互作用可以被脉冲调制,以自由编程单量子比特、双量子比特、三量子比特和四量子比特操作,从而得到一个紧凑而高度连接的电路。我们执行了一个量子逻辑电路,生成了一个四量子比特 Greenberger-Horne-Zeilinger 态,并通过结合动态解耦实现了相干演化。这些结果是朝着使用量子点进行量子纠错和量子模拟迈出的一步。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验