Suppr超能文献

结构复杂空间中的疾病传播模型:一种开放马尔可夫链方法。

Disease Spread Model in Structurally Complex Spaces: An Open Markov Chain Approach.

作者信息

García-Maya Brenda Ivette, Morales-Huerta Yehtli, Salgado-García Raúl

机构信息

Escuela de Ingeniería y Ciencias, Tecnológico de Monterrey, Jalisco, Mexico.

Instituto de Investigación en Ciencias Básica y Aplicadas, Universidad Autónoma del Estado de Morelos, Cuernavaca Morelos, Mexico.

出版信息

J Comput Biol. 2025 Apr;32(4):394-416. doi: 10.1089/cmb.2024.0630. Epub 2025 Feb 11.

Abstract

Understanding the dynamical behavior of infectious disease propagation within enclosed spaces is crucial for effectively establishing control measures. In this article, we present a modeling approach to analyze the dynamics of individuals in enclosed spaces, where such spaces are comprised of different chambers. Our focus is on capturing the movement of individuals and their infection status using an open Markov chain framework. Unlike ordinary Markov chains, an open Markov chain accounts for individuals entering and leaving the system. We categorize individuals within the system into three different groups: susceptible, carrier, and infected. A discrete-time process is employed to model the behavior of individuals throughout the system. To quantify the risk of infection, we derive a probability function that takes into account the total number of individuals inside the system and the distribution among the different groups. Furthermore, we calculate mathematical expressions for the average number of susceptible, carrier, and infected individuals at each time step. Additionally, we determine mathematical expressions for the mean number and stationary mean populations of these groups. To validate our modeling approach, we compare the theoretical and numerical models proposed in this work.

摘要

了解传染病在封闭空间内的传播动态行为对于有效制定控制措施至关重要。在本文中,我们提出了一种建模方法来分析封闭空间内个体的动态,其中此类空间由不同的腔室组成。我们的重点是使用开放马尔可夫链框架来捕捉个体的移动及其感染状态。与普通马尔可夫链不同,开放马尔可夫链考虑了个体进入和离开系统的情况。我们将系统内的个体分为三类:易感者、携带者和感染者。采用离散时间过程对整个系统中个体的行为进行建模。为了量化感染风险,我们推导了一个概率函数,该函数考虑了系统内个体的总数以及不同组之间的分布。此外,我们计算了每个时间步易感者、携带者和感染者的平均数量的数学表达式。此外,我们还确定了这些组的平均数量和稳态平均种群的数学表达式。为了验证我们的建模方法,我们比较了本文提出的理论模型和数值模型。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验