Suppr超能文献

人口流动与停留时间:对空间传染病传播的影响。

Human mobility and time spent at destination: impact on spatial epidemic spreading.

机构信息

Computational Epidemiology Laboratory, Institute for Scientific Interchange (ISI) Foundation, Turin, Italy; INSERM, U707, Paris, France; UPMC Université Paris 06, Faculté de Médecine Pierre et Marie Curie, UMR S 707, Paris, France.

出版信息

J Theor Biol. 2013 Dec 7;338:41-58. doi: 10.1016/j.jtbi.2013.08.032. Epub 2013 Sep 4.

Abstract

Host mobility plays a fundamental role in the spatial spread of infectious diseases. Previous theoretical works based on the integration of network theory into the metapopulation framework have shown that the heterogeneities that characterize real mobility networks favor the propagation of epidemics. Nevertheless, the studies conducted so far assumed the mobility process to be either Markovian (in which the memory of the origin of each traveler is lost) or non-Markovian with a fixed traveling time scale (in which individuals travel to a destination and come back at a constant rate). Available statistics however show that the time spent by travelers at destination is characterized by wide fluctuations, ranging from a single day up to several months. Such varying length of stay crucially affects the chance and duration of mixing events among hosts and may therefore have a strong impact on the spread of an emerging disease. Here, we present an analytical and a computational study of epidemic processes on a complex subpopulation network where travelers have memory of their origin and spend a heterogeneously distributed time interval at their destination. Through analytical calculations and numerical simulations we show that the heterogeneity of the length of stay alters the expression of the threshold between local outbreak and global invasion, and, moreover, it changes the epidemic behavior of the system in case of a global outbreak. Additionally, our theoretical framework allows us to study the effect of changes in the traveling behavior in response to the infection, by considering a scenario in which sick individuals do not leave their home location. Finally, we compare the results of our non-Markovian framework with those obtained with a classic Markovian approach and find relevant differences between the two, in the estimate of the epidemic invasion potential, as well as of the timing and the pattern of its spatial spread. These results highlight the importance of properly accounting for host trip duration in epidemic models and open the path to the inclusion of such an additional layer of complexity to the existing modeling approaches.

摘要

宿主的移动性在传染病的空间传播中起着至关重要的作用。先前基于网络理论与复合种群框架相结合的理论研究表明,现实中移动性网络的异质性有利于传染病的传播。然而,迄今为止的研究都假设移动过程要么是马尔可夫的(在这种情况下,每个旅行者的起源记忆都会丢失),要么是非马尔可夫的且具有固定的旅行时间尺度(在这种情况下,个体以恒定的速率旅行到目的地并返回)。然而,现有的统计数据表明,旅行者在目的地停留的时间具有广泛的波动,从一天到几个月不等。这种停留时间的变化极大地影响了宿主之间混合事件的机会和持续时间,因此可能对新发传染病的传播产生强烈影响。在这里,我们对具有起源记忆且在目的地停留时间呈异质分布的复杂亚群网络上的传染病过程进行了分析和计算研究。通过分析计算和数值模拟,我们表明停留时间的异质性改变了局部爆发和全局入侵之间的阈值表达式,而且,它改变了系统在全局爆发时的传染病行为。此外,我们的理论框架允许我们通过考虑感染后旅行行为发生变化的情况来研究其对系统的影响,在这种情况下,患病个体不会离开他们的居住地点。最后,我们将我们的非马尔可夫框架的结果与经典马尔可夫方法的结果进行了比较,发现了两者之间的显著差异,包括传染病入侵潜力的估计,以及其空间传播的时间和模式。这些结果强调了在传染病模型中正确考虑宿主旅行时间的重要性,并为在现有建模方法中纳入这种额外的复杂性开辟了道路。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验