Suppr超能文献

阻塞性气道疾病的计算表型分析:一项系统综述

Computational Phenotyping of Obstructive Airway Diseases: A Systematic Review.

作者信息

Bashir Muwada Bashir Awad, Milani Gregorio Paolo, De Cosmi Valentina, Mazzocchi Alessandra, Zhang Guoqiang, Basna Rani, Hedman Linnea, Lindberg Anne, Ekerljung Linda, Axelsson Malin, Vanfleteren Lowie E G W, Rönmark Eva, Backman Helena, Kankaanranta Hannu, Nwaru Bright I

机构信息

Krefting Research Centre, Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden.

Pediatric Unit, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.

出版信息

J Asthma Allergy. 2025 Feb 6;18:113-160. doi: 10.2147/JAA.S463572. eCollection 2025.

Abstract

INTRODUCTION

Computational sciences have significantly contributed to characterizing airway disease phenotypes, complementing medical expertise. However, comparing studies that derive phenotypes is challenging due to varying decisions made during phenotyping. We conducted a systematic review to describe studies that utilized unsupervised computational approaches for phenotyping obstructive airway diseases in children and adults.

METHODS

We searched for relevant papers published between 2010 and 2020 in PubMed, EMBASE, Scopus, Web of Science, and Google Scholar. Additional sources included conference proceedings, reference lists, and expert recommendations. Two reviewers independently screened studies for eligibility, extracted data, and assessed study quality. Disagreements were resolved by a third reviewer. An in-house quality appraisal tool was used. Evidence was synthesized, focusing on populations, variables, and computational approaches used for deriving phenotypes.

RESULTS

Of 120 studies included in the review, 60 focused on asthma, 19 on severe asthma, 28 on COPD, 4 on asthma-COPD overlap (ACO), and 9 on rhinitis. Among asthma studies, 31 focused on adults and 9 on children, with phenotypes related to atopy, age at onset, and disease severity. Severe asthma phenotypes were characterized by symptomatology, atopy, and age at onset. COPD phenotypes involved lung function, emphysematous changes, smoking, comorbidities, and daily life impairment. ACO and rhinitis phenotypes were mostly defined by symptoms, lung function, and sensitization, respectively. Most studies used hierarchical clustering, with some employing latent class modeling, mixture models, and factor analysis. The comprehensiveness of variable reporting was the best quality indicator, while reproducibility measures were often lacking.

CONCLUSION

Variations in phenotyping methods, study settings, participant profiles, and variables contribute to significant differences in characterizing asthma, severe asthma, COPD, ACO, and rhinitis phenotypes across studies. Lack of reproducibility measures limits the evaluation of computational phenotyping in airway diseases, underscoring the need for consistent approaches to defining outcomes and selecting variables to ensure reliable phenotyping.

摘要

引言

计算科学在气道疾病表型特征描述方面做出了重大贡献,对医学专业知识起到了补充作用。然而,由于在表型分析过程中做出的决策各不相同,比较推导表型的研究具有挑战性。我们进行了一项系统综述,以描述利用无监督计算方法对儿童和成人阻塞性气道疾病进行表型分析的研究。

方法

我们在PubMed、EMBASE、Scopus、Web of Science和谷歌学术搜索了2010年至2020年发表的相关论文。其他来源包括会议论文集、参考文献列表和专家推荐。两名评审员独立筛选研究的 eligibility,提取数据,并评估研究质量。分歧由第三名评审员解决。使用了内部质量评估工具。对证据进行了综合,重点关注用于推导表型的人群、变量和计算方法。

结果

在纳入综述的120项研究中,60项聚焦于哮喘,19项聚焦于重度哮喘,28项聚焦于慢性阻塞性肺疾病(COPD),4项聚焦于哮喘-COPD重叠综合征(ACO),9项聚焦于鼻炎。在哮喘研究中,31项聚焦于成人,9项聚焦于儿童,其表型与特应性、发病年龄和疾病严重程度相关。重度哮喘表型以症状、特应性和发病年龄为特征。COPD表型涉及肺功能、肺气肿改变、吸烟、合并症和日常生活障碍。ACO和鼻炎表型大多分别由症状、肺功能和致敏来定义。大多数研究使用层次聚类,一些研究采用潜在类别建模、混合模型和因子分析。变量报告的全面性是最佳质量指标,而重复性测量往往缺乏。

结论

表型分析方法、研究环境、参与者特征和变量的差异导致各研究在哮喘、重度哮喘、COPD、ACO和鼻炎表型特征描述上存在显著差异。缺乏重复性测量限制了气道疾病计算表型分析的评估,凸显了需要采用一致的方法来定义结局和选择变量,以确保可靠的表型分析。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3ec3/11809425/004f4c14ffac/JAA-18-113-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验