Antonatos Nikolas, Herman Artur P, de Simoni Beatriz, Ciesiołkiewicz Karolina, Belas Eduard, Betušiak Marián, Grill Roman, Sarkar Kalyan Jyoti, Subramani Amutha, Sedmidubský David, Jadriško Valentino, Baserga Alessandro, Bertolotti Micol, Dal Conte Stefano, Gadermaier Christoph, Cerullo Giulio, Treglia Antonella, Petrozza Annamaria, Kudrawiec Robert, Sofer Zdeněk
Department of Inorganic Chemistry, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague 6, Czech Republic.
Department of Semiconductor Materials Engineering, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland.
Nano Lett. 2025 Feb 26;25(8):3053-3058. doi: 10.1021/acs.nanolett.4c04945. Epub 2025 Feb 11.
Chalcogen phosphates of transition metals make up a well-known group of antiferromagnetic semiconductors with the general formula MPX, where M represents a transition metal and X is a chalcogen, either sulfur or selenium. Most of these compounds adopt a similar structure; however, mercury phosphochalcogenides present an exception with their unique van der Waals layered structure. Transition metal chalcogenides are highly appealing materials for photodetectors due to their exceptional optoelectronic properties. Among them, HgPSe, a layered van der Waals phosphoselenide, shows promise for photodetection over a broad spectral range, from visible light to X-rays. Despite this, the electronic processes governing its photoresponse remain unclear. In this study, we demonstrate a nanosecond response time of a HgPSe-based photodetector to visible light and gain deeper insights into the underlying charge carrier dynamics through a comprehensive investigation using complementary time-resolved experimental techniques. Our findings on the role of carrier traps provide a potential pathway for optimizing optoelectronic device performance.
过渡金属硫属磷化物构成了一类著名的反铁磁半导体,其通式为MPX,其中M代表过渡金属,X为硫属元素,即硫或硒。这些化合物大多具有相似的结构;然而,汞磷硫属化物以其独特的范德华层状结构成为一个例外。过渡金属硫属化物因其优异的光电性能而成为光探测器极具吸引力的材料。其中,HgPSe这种层状范德华磷硒化物在从可见光到X射线的宽光谱范围内显示出光探测的潜力。尽管如此,其光响应所涉及的电子过程仍不清楚。在本研究中,我们展示了基于HgPSe的光探测器对可见光的纳秒响应时间,并通过使用互补的时间分辨实验技术进行全面研究,对潜在的电荷载流子动力学有了更深入的了解。我们关于载流子陷阱作用的发现为优化光电器件性能提供了一条潜在途径。