Suppr超能文献

巴雷特食管内镜检查计算机辅助质量控制系统的开发与体外评估

The development and ex vivo evaluation of a computer-aided quality control system for Barrett's esophagus endoscopy.

作者信息

Jong Martijn R, Jaspers Tim J M, van Eijck van Heslinga Rixta A H, Jukema Jelmer B, Kusters Carolus H J, Boers Tim G W, Pouw Roos E, Duits Lucas C, de With Peter H N, van der Sommen Fons, de Groof Albert Jeroen, Bergman Jacques J G H M

机构信息

Department of Gastroenterology and Hepatology, Amsterdam Gastroenterology, Endocrinology and Metabolism, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands.

Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands.

出版信息

Endoscopy. 2025 Jul;57(7):709-716. doi: 10.1055/a-2537-3510. Epub 2025 Feb 11.

Abstract

BACKGROUND

Timely detection of neoplasia in Barrett's esophagus (BE) remains challenging. While computer-aided detection (CADe) systems have been developed to assist endoscopists, their effectiveness depends heavily on the quality of the endoscopic procedure. This study introduces a novel computer-aided quality (CAQ) system for BE, evaluating its stand-alone performance and integration with a CADe system. METHOD : The CAQ system was developed using 7,463 images from 359 BE patients. It assesses objective quality parameters (e. g., blurriness, illumination) and subjective parameters (mucosal cleanliness, esophageal expansion) and can exclude low-quality images when integrated with a CADe system.To evaluate CAQ stand-alone performance, the Endoscopic Image Quality test set, consisting of 647 images from 51 BE patients across 8 hospitals, was labeled for objective and subjective quality. To assess the benefit of the CAQ system as a preprocessing filter of a CADe system, the Barrett CADe test set was developed. It consisted of 956 video frames from 62 neoplastic patients and 557 frames from 35 non-dysplastic patients, in 12 Barrett referral centers. RESULTS : As stand-alone tool, the CAQ system achieved Cohen's Kappa scores of 0.73, 0.91, and 0.89 for objective quality, mucosal cleanliness, and esophageal expansion, comparable to inter-annotator scores of 0.73, 0.93, and 0.83. As preprocessing filter, the CAQ system improved CADe sensitivity from 82 % to 90 % and AUC from 87 % to 91 %, while maintaining specificity at 75 %. CONCLUSION : This study presents the first CAQ system for automated quality control in BE. The system effectively distinguishes poorly from well-visualized mucosa and enhances neoplasia detection when integrated with CADe.

摘要

背景

在巴雷特食管(BE)中及时检测肿瘤仍然具有挑战性。虽然已经开发了计算机辅助检测(CADe)系统来协助内镜医师,但它们的有效性在很大程度上取决于内镜检查程序的质量。本研究引入了一种用于BE的新型计算机辅助质量(CAQ)系统,评估其独立性能以及与CADe系统的集成情况。

方法

CAQ系统是使用来自359例BE患者的7463张图像开发的。它评估客观质量参数(如模糊度、照明)和主观参数(黏膜清洁度、食管扩张度),并且在与CADe系统集成时可以排除低质量图像。为了评估CAQ的独立性能,对由来自8家医院的51例BE患者的647张图像组成的内镜图像质量测试集进行了客观和主观质量标注。为了评估CAQ系统作为CADe系统预处理过滤器的益处,开发了巴雷特CADe测试集。它由来自12个巴雷特转诊中心的62例肿瘤患者的956个视频帧和35例非发育异常患者的557个帧组成。

结果

作为独立工具,CAQ系统在客观质量、黏膜清洁度和食管扩张度方面的科恩kappa系数分别达到0.73、0.91和0.89,与标注者间的系数0.73、0.93和0.83相当。作为预处理过滤器,CAQ系统将CADe的灵敏度从82%提高到90%,曲线下面积(AUC)从87%提高到91%,同时将特异性保持在75%。

结论

本研究提出了首个用于BE自动质量控制的CAQ系统。该系统能有效区分可视化不佳与良好的黏膜,并在与CADe集成时增强肿瘤检测能力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b3ca/12204732/232dfd5789b2/10-1055-a-2537-3510-i24857en1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验