文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

Deep attention model for arrhythmia signal classification based on multi-objective crayfish optimization algorithmic variational mode decomposition.

作者信息

Zhang Yihang, Zhao Hang

机构信息

Information Center, Zhejiang Provincial People's Hospital, Hangzhou, 310014, China.

School of Physics and Optoelectronic Engineering, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China.

出版信息

Sci Rep. 2025 Feb 11;15(1):5080. doi: 10.1038/s41598-025-89752-0.


DOI:10.1038/s41598-025-89752-0
PMID:39934416
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11814338/
Abstract

The detection and classification of arrhythmia play a vital role in the diagnosis and management of cardiac disorders. Many deep learning techniques are utilized for arrhythmia classification in current research but only based on ECG data, lacking the mathematical foundations of cardiac electrophysiology. A finite element model (FEM) of the human heart based on the FitzHugh-Nagumo (FHN) model was established for cardiac electrophysiology simulation and the ECG signals were acquired from the FEM results of representative points. Two different kinds of arrhythmia characterized by major anomalies of parameters a and ɛ in the FHN model were simulated, and the synthetic ECG signals were obtained respectively. A multi-objective optimization method based on non-dominated sorting was incorporated into the crayfish optimization algorithm to optimize the key parameters in VMD, then a variational mode decomposition technique for ECG signal processing based on a multi-objective crayfish optimization algorithm (MOCOA-VMD) was proposed, wherein the spectral kurtosis and KL divergence were determined as the indicators for decomposition. The Pareto optimal front was generated by MOCOA and the intrinsic mode functions of VMD with the best combination of K and α were obtained. A deep attention model based on MOCOA-VMD was constructed for ECG signal classification. The ablation study was implemented to verify the effectiveness of the proposed signal decomposition method and deep attention modules. The performance of the model based on MOCOA-VMD achieves the best accuracy of 94.35%, much higher than the model constructed by modules of EEMD, VMD and CNN. Moreover, Bayesian optimization was carried out to fine-tune the hyperparameters batch size, learning rate, epochs, and momentum. After TPE optimization, the deep model's performance achieved a maximum accuracy of 95.91%. The MIT-BIH arrhythmia database was further utilized for model validation, ascertaining its robustness and generalizability. The proposed deep attention modeling and classification strategy can help in arrhythmia signal processing and may offer inspiration for other signal processing fields as well.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8c52/11814338/532a7defadb6/41598_2025_89752_Fig12_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8c52/11814338/0be3679a8b8a/41598_2025_89752_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8c52/11814338/6e79a0a48d6b/41598_2025_89752_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8c52/11814338/3c8a004dcb5e/41598_2025_89752_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8c52/11814338/491d684fac07/41598_2025_89752_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8c52/11814338/3ee35cb5cbd4/41598_2025_89752_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8c52/11814338/6ca93dcccfdd/41598_2025_89752_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8c52/11814338/6af3d6a0ae7c/41598_2025_89752_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8c52/11814338/bf65bf183c9c/41598_2025_89752_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8c52/11814338/c10c8438fb61/41598_2025_89752_Fig9_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8c52/11814338/455698c1ed64/41598_2025_89752_Fig10_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8c52/11814338/511dc13b4a67/41598_2025_89752_Fig11_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8c52/11814338/532a7defadb6/41598_2025_89752_Fig12_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8c52/11814338/0be3679a8b8a/41598_2025_89752_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8c52/11814338/6e79a0a48d6b/41598_2025_89752_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8c52/11814338/3c8a004dcb5e/41598_2025_89752_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8c52/11814338/491d684fac07/41598_2025_89752_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8c52/11814338/3ee35cb5cbd4/41598_2025_89752_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8c52/11814338/6ca93dcccfdd/41598_2025_89752_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8c52/11814338/6af3d6a0ae7c/41598_2025_89752_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8c52/11814338/bf65bf183c9c/41598_2025_89752_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8c52/11814338/c10c8438fb61/41598_2025_89752_Fig9_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8c52/11814338/455698c1ed64/41598_2025_89752_Fig10_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8c52/11814338/511dc13b4a67/41598_2025_89752_Fig11_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8c52/11814338/532a7defadb6/41598_2025_89752_Fig12_HTML.jpg

相似文献

[1]
Deep attention model for arrhythmia signal classification based on multi-objective crayfish optimization algorithmic variational mode decomposition.

Sci Rep. 2025-2-11

[2]
A hybrid deep learning network for automatic diagnosis of cardiac arrhythmia based on 12-lead ECG.

Sci Rep. 2024-10-18

[3]
A deep Bi-CapsNet for analysing ECG signals to classify cardiac arrhythmia.

Comput Biol Med. 2025-5

[4]
Classification of myocardial infarction based on hybrid feature extraction and artificial intelligence tools by adopting tunable-Q wavelet transform (TQWT), variational mode decomposition (VMD) and neural networks.

Artif Intell Med. 2020-6

[5]
Accurate Arrhythmia Classification with Multi-Branch, Multi-Head Attention Temporal Convolutional Networks.

Sensors (Basel). 2024-12-19

[6]
Power-line interference and baseline wander elimination in ECG using VMD and EWT.

Comput Methods Biomech Biomed Engin. 2024-11

[7]
Multi-criteria Bayesian optimization of Empirical Mode Decomposition and hybrid filters fusion for enhanced ECG signal denoising and classification: Cardiac arrhythmia and myocardial infarction cases.

Comput Biol Med. 2025-1

[8]
A multi-scale convolutional LSTM-dense network for robust cardiac arrhythmia classification from ECG signals.

Comput Biol Med. 2025-6

[9]
Hybrid Prediction Method for ECG Signals Based on VMD, PSR, and RBF Neural Network.

Biomed Res Int. 2021

[10]
ECG feature extraction based on the bandwidth properties of variational mode decomposition.

Physiol Meas. 2016-4

本文引用的文献

[1]
A review of arrhythmia detection based on electrocardiogram with artificial intelligence.

Expert Rev Med Devices. 2022-7

[2]
A Hybrid Deep CNN Model for Abnormal Arrhythmia Detection Based on Cardiac ECG Signal.

Sensors (Basel). 2021-2-1

[3]
Artificial intelligence-enhanced electrocardiography in cardiovascular disease management.

Nat Rev Cardiol. 2021-7

[4]
Artificial Intelligence and Machine Learning in Arrhythmias and Cardiac Electrophysiology.

Circ Arrhythm Electrophysiol. 2020-7-6

[5]
Heart Disease and Stroke Statistics-2020 Update: A Report From the American Heart Association.

Circulation. 2020-1-29

[6]
Automated diagnosis of arrhythmia using combination of CNN and LSTM techniques with variable length heart beats.

Comput Biol Med. 2018-6-5

[7]
Overview of Basic Mechanisms of Cardiac Arrhythmia.

Card Electrophysiol Clin. 2011-3-1

[8]
Impulses and Physiological States in Theoretical Models of Nerve Membrane.

Biophys J. 1961-7

[9]
Voltage oscillations in the barnacle giant muscle fiber.

Biophys J. 1981-7

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索