Suppr超能文献

人工智能和机器学习在心律失常和心脏电生理学中的应用。

Artificial Intelligence and Machine Learning in Arrhythmias and Cardiac Electrophysiology.

机构信息

Cleveland Clinic Lerner College of Medicine (A.K.F., M.K.C.), Case Western Reserve University, OH.

Department of Cardiovascular Medicine, Cleveland Clinic, OH (M.K.C., K.G.T., S.A.T.).

出版信息

Circ Arrhythm Electrophysiol. 2020 Aug;13(8):e007952. doi: 10.1161/CIRCEP.119.007952. Epub 2020 Jul 6.

Abstract

Artificial intelligence (AI) and machine learning (ML) in medicine are currently areas of intense exploration, showing potential to automate human tasks and even perform tasks beyond human capabilities. Literacy and understanding of AI/ML methods are becoming increasingly important to researchers and clinicians. The first objective of this review is to provide the novice reader with literacy of AI/ML methods and provide a foundation for how one might conduct an ML study. We provide a technical overview of some of the most commonly used terms, techniques, and challenges in AI/ML studies, with reference to recent studies in cardiac electrophysiology to illustrate key points. The second objective of this review is to use examples from recent literature to discuss how AI and ML are changing clinical practice and research in cardiac electrophysiology, with emphasis on disease detection and diagnosis, prediction of patient outcomes, and novel characterization of disease. The final objective is to highlight important considerations and challenges for appropriate validation, adoption, and deployment of AI technologies into clinical practice.

摘要

人工智能(AI)和机器学习(ML)在医学领域目前是一个深入探索的领域,具有自动化人类任务甚至执行超越人类能力的任务的潜力。对研究人员和临床医生来说,具备 AI/ML 方法的读写能力变得越来越重要。本综述的第一个目标是为初学者提供 AI/ML 方法的读写能力,并为如何进行 ML 研究提供基础。我们提供了一些最常用的术语、技术和 AI/ML 研究中的挑战的技术概述,并参考心脏电生理学中的最新研究来说明要点。本综述的第二个目标是使用来自最新文献的示例来讨论 AI 和 ML 如何改变心脏电生理学的临床实践和研究,重点是疾病检测和诊断、患者预后预测以及疾病的新特征描述。最后一个目标是强调在将 AI 技术恰当地验证、采用和部署到临床实践中时需要考虑的重要因素和挑战。

相似文献

2
Machine Learning in Arrhythmia and Electrophysiology.机器学习在心律失常和电生理学中的应用。
Circ Res. 2021 Feb 19;128(4):544-566. doi: 10.1161/CIRCRESAHA.120.317872. Epub 2021 Feb 18.
3
The Current State of Cardiac Electrophysiology.心脏电生理学的现状
Methodist Debakey Cardiovasc J. 2015 Apr-Jun;11(2):70. doi: 10.14797/mdcj-11-2-70.
4
Mapping the unmappable: local vector mapping.绘制无法绘制的地图:局部向量映射。
Europace. 2017 Jul 1;19(7):1233-1236. doi: 10.1093/europace/euw120.
6
Artificial intelligence for a personalized diagnosis and treatment of atrial fibrillation.人工智能在心房颤动的个体化诊断和治疗中的应用。
Am J Physiol Heart Circ Physiol. 2021 Apr 1;320(4):H1337-H1347. doi: 10.1152/ajpheart.00764.2020. Epub 2021 Jan 29.
7
MY APPROACH to early repolarization syndrome.我对早期复极综合征的处理方法。
Trends Cardiovasc Med. 2016 May;26(4):393-4. doi: 10.1016/j.tcm.2015.08.008. Epub 2016 Jan 29.
8
Pacemaker Troubleshooting: Common Clinical Scenarios.起搏器故障排查:常见临床情况
Tex Heart Inst J. 2016 Oct 1;43(5):415-418. doi: 10.14503/THIJ-16-5918. eCollection 2016 Oct.
9
Year in Review in Cardiac Electrophysiology.心律失常学年评
Circ Arrhythm Electrophysiol. 2020 Jun;13(6):e008733. doi: 10.1161/CIRCEP.120.008733. Epub 2020 May 18.

引用本文的文献

9
Artificial intelligence in cardiovascular practice.心血管实践中的人工智能
Nurse Pract. 2025 May 1;50(5):13-24. doi: 10.1097/01.NPR.0000000000000312. Epub 2025 Apr 24.

本文引用的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验