Suppr超能文献

使用贝叶斯网络预测房颤复发:可解释人工智能方法

Predicting Atrial Fibrillation Relapse Using Bayesian Networks: Explainable AI Approach.

作者信息

Alves João Miguel, Matos Daniel, Martins Tiago, Cavaco Diogo, Carmo Pedro, Galvão Pedro, Costa Francisco Moscoso, Morgado Francisco, Ferreira António Miguel, Freitas Pedro, Dias Cláudia Camila, Rodrigues Pedro Pereira, Adragão Pedro

机构信息

Department of Community Medicine, Information and Health Decision Sciences, Faculty of Medicine, University of Porto, Rua Dr Plácido da Costa, Porto, 4200-450, Portugal, 351 22 551 3622.

CINTESIS @ RISE - Center for Health Technology and Services Research, Porto, Portugal.

出版信息

JMIR Cardio. 2025 Feb 11;9:e59380. doi: 10.2196/59380.

Abstract

BACKGROUND

Atrial fibrillation (AF) is a prevalent arrhythmia associated with significant morbidity and mortality. Despite advancements in ablation techniques, predicting recurrence of AF remains a challenge, necessitating reliable models to identify patients at risk of relapse. Traditional scoring systems often lack applicability in diverse clinical settings and may not incorporate the latest evidence-based factors influencing AF outcomes. This study aims to develop an explainable artificial intelligence model using Bayesian networks to predict AF relapse postablation, leveraging on easily obtainable clinical variables.

OBJECTIVE

This study aims to investigate the effectiveness of Bayesian networks as a predictive tool for AF relapse following a percutaneous pulmonary vein isolation (PVI) procedure. The objectives include evaluating the model's performance using various clinical predictors, assessing its adaptability to incorporate new risk factors, and determining its potential to enhance clinical decision-making in the management of AF.

METHODS

This study analyzed data from 480 patients with symptomatic drug-refractory AF who underwent percutaneous PVI. To predict AF relapse following the procedure, an explainable artificial intelligence model based on Bayesian networks was developed. The model used a variable number of clinical predictors, including age, sex, smoking status, preablation AF type, left atrial volume, epicardial fat, obstructive sleep apnea, and BMI. The predictive performance of the model was evaluated using the area under the receiver operating characteristic curve (AUC-ROC) metrics across different configurations of predictors (5, 6, and 7 variables). Validation was conducted through four distinct sampling techniques to ensure robustness and reliability of the predictions.

RESULTS

The Bayesian network model demonstrated promising predictive performance for AF relapse. Using 5 predictors (age, sex, smoking, preablation AF type, and obstructive sleep apnea), the model achieved an AUC-ROC of 0.661 (95% CI 0.603-0.718). Incorporating additional predictors improved performance, with a 6-predictor model (adding BMI) achieving an AUC-ROC of 0.703 (95% CI 0.652-0.753) and a 7-predictor model (adding left atrial volume and epicardial fat) achieving an AUC-ROC of 0.752 (95% CI 0.701-0.800). These results indicate that the model can effectively estimate the risk of AF relapse using readily available clinical variables. Notably, the model maintained acceptable diagnostic accuracy even in scenarios where some predictive features were missing, highlighting its adaptability and potential use in real-world clinical settings.

CONCLUSIONS

The developed Bayesian network model provides a reliable and interpretable tool for predicting AF relapse in patients undergoing percutaneous PVI. By using easily accessible clinical variables, presenting acceptable diagnostic accuracy, and showing adaptability to incorporate new medical knowledge over time, the model demonstrates a flexibility and robustness that makes it suitable for real-world clinical scenarios.

摘要

背景

心房颤动(AF)是一种常见的心律失常,与显著的发病率和死亡率相关。尽管消融技术有所进步,但预测AF复发仍然是一项挑战,因此需要可靠的模型来识别有复发风险的患者。传统评分系统在不同临床环境中往往缺乏适用性,可能未纳入影响AF转归的最新循证因素。本研究旨在利用易于获取的临床变量,开发一种基于贝叶斯网络的可解释人工智能模型,以预测AF消融术后的复发情况。

目的

本研究旨在探讨贝叶斯网络作为经皮肺静脉隔离(PVI)术后AF复发预测工具的有效性。目标包括使用各种临床预测指标评估模型的性能,评估其纳入新风险因素的适应性,以及确定其在AF管理中增强临床决策的潜力。

方法

本研究分析了480例有症状的药物难治性AF患者接受经皮PVI的数据。为预测术后AF复发,开发了一种基于贝叶斯网络的可解释人工智能模型。该模型使用了不同数量的临床预测指标,包括年龄、性别、吸烟状况、消融前AF类型、左心房容积、心外膜脂肪、阻塞性睡眠呼吸暂停和体重指数(BMI)。使用不同预测指标配置(5、6和7个变量)下的受试者工作特征曲线下面积(AUC-ROC)指标评估模型的预测性能。通过四种不同的抽样技术进行验证,以确保预测的稳健性和可靠性。

结果

贝叶斯网络模型在预测AF复发方面表现出良好的性能。使用5个预测指标(年龄、性别、吸烟、消融前AF类型和阻塞性睡眠呼吸暂停)时,模型的AUC-ROC为0.661(95%CI 0.603-0.718)。纳入更多预测指标可提高性能,6个预测指标的模型(增加BMI)的AUC-ROC为0.703(95%CI 0.652-0.753),7个预测指标的模型(增加左心房容积和心外膜脂肪)的AUC-ROC为0.752(95%CI 0.701-0.800)。这些结果表明,该模型可以使用现成的临床变量有效估计AF复发风险。值得注意的是,即使在某些预测特征缺失的情况下,该模型仍保持可接受的诊断准确性,突出了其在实际临床环境中的适应性和潜在用途。

结论

所开发的贝叶斯网络模型为预测接受经皮PVI患者的AF复发提供了一种可靠且可解释的工具。通过使用易于获取的临床变量,呈现出可接受的诊断准确性,并显示出随时间纳入新医学知识的适应性,该模型展示了使其适用于实际临床场景的灵活性和稳健性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0784/11835785/8ebb7b5cc5fc/cardio-v9-e59380-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验