文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

整合多组学分析用于鉴定肺腺癌中的新型治疗靶点及预测免疫治疗疗效

Integrative multi-omics analysis for identifying novel therapeutic targets and predicting immunotherapy efficacy in lung adenocarcinoma.

作者信息

Chen Zilu, Mei Kun, Tan Foxing, Zhou Yuheng, Du Haolin, Wang Min, Gu Renjun, Huang Yan

机构信息

Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu, China.

Authors contributed equally.

出版信息

Cancer Drug Resist. 2025 Jan 14;8:3. doi: 10.20517/cdr.2024.91. eCollection 2025.


DOI:10.20517/cdr.2024.91
PMID:39935429
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11810459/
Abstract

Lung adenocarcinoma (LUAD), the most prevalent subtype of non-small cell lung cancer (NSCLC), presents significant clinical challenges due to its high mortality and limited therapeutic options. The molecular heterogeneity and the development of therapeutic resistance further complicate treatment, underscoring the need for a more comprehensive understanding of its cellular and molecular characteristics. This study sought to delineate novel cellular subpopulations and molecular subtypes of LUAD, identify critical biomarkers, and explore potential therapeutic targets to enhance treatment efficacy and patient prognosis. An integrative multi-omics approach was employed to incorporate single-cell RNA sequencing (scRNA-seq), bulk transcriptomic analysis, and genome-wide association study (GWAS) data from multiple LUAD patient cohorts. Advanced computational approaches, including Bayesian deconvolution and machine learning algorithms, were used to comprehensively characterize the tumor microenvironment, classify LUAD subtypes, and develop a robust prognostic model. Our analysis identified eleven distinct cellular subpopulations within LUAD, with epithelial cells predominating and exhibiting high mutation frequencies in Tumor Protein 53 ( and Titin ( genes. Two molecular subtypes of LUAD [consensus subtype (CS)1 and CS2] were identified, each showing distinct immune landscapes and clinical outcomes. The CS2 subtype, characterized by increased immune cell infiltration, demonstrated a more favorable prognosis and higher sensitivity to immunotherapy. Furthermore, a multi-omics-driven machine learning signature (MOMLS) identified ribonucleotide reductase M1 (RRM1) as a critical biomarker associated with chemotherapy response. Based on this model, several potential therapeutic agents targeting different subtypes were proposed. This study presents a comprehensive multi-omics framework for understanding the molecular complexity of LUAD, providing insights into cellular heterogeneity, molecular subtypes, and potential therapeutic targets. Differential sensitivity to immunotherapy among various cellular subpopulations was identified, paving the way for future immunotherapy-focused research.

摘要

肺腺癌(LUAD)是非小细胞肺癌(NSCLC)最常见的亚型,因其高死亡率和有限的治疗选择而带来了重大的临床挑战。分子异质性和治疗耐药性的发展使治疗更加复杂,凸显了更全面了解其细胞和分子特征的必要性。本研究旨在描绘LUAD新的细胞亚群和分子亚型,识别关键生物标志物,并探索潜在的治疗靶点,以提高治疗效果和患者预后。采用整合多组学方法,纳入来自多个LUAD患者队列的单细胞RNA测序(scRNA-seq)、批量转录组分析和全基因组关联研究(GWAS)数据。使用先进的计算方法,包括贝叶斯反卷积和机器学习算法,全面表征肿瘤微环境,对LUAD亚型进行分类,并建立一个强大的预后模型。我们的分析在LUAD中确定了11个不同的细胞亚群,其中上皮细胞占主导,在肿瘤蛋白53(TP53)和肌联蛋白(TTN)基因中表现出高突变频率。确定了LUAD的两种分子亚型[共识亚型(CS)1和CS2],每种亚型都显示出不同的免疫格局和临床结果。以免疫细胞浸润增加为特征的CS2亚型显示出更有利的预后和对免疫治疗更高的敏感性。此外,一个多组学驱动的机器学习特征(MOMLS)确定核糖核苷酸还原酶M1(RRM1)是与化疗反应相关的关键生物标志物。基于该模型,提出了几种针对不同亚型的潜在治疗药物。本研究提出了一个全面的多组学框架,用于理解LUAD的分子复杂性,为细胞异质性、分子亚型和潜在治疗靶点提供了见解。确定了不同细胞亚群对免疫治疗的差异敏感性,为未来以免疫治疗为重点的研究铺平了道路。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5d4f/11810459/c96d5366af93/cdr-8-3.fig.11.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5d4f/11810459/7d08125bea4c/cdr-8-3.fig.1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5d4f/11810459/e5eec2b4192b/cdr-8-3.fig.2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5d4f/11810459/c10fc2cffd6b/cdr-8-3.fig.3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5d4f/11810459/07d6082075e2/cdr-8-3.fig.4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5d4f/11810459/5d81be922020/cdr-8-3.fig.5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5d4f/11810459/ce5cb712619b/cdr-8-3.fig.6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5d4f/11810459/56eeacaac31d/cdr-8-3.fig.7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5d4f/11810459/a7e924a8a501/cdr-8-3.fig.8.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5d4f/11810459/11119fa68913/cdr-8-3.fig.9.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5d4f/11810459/efcda0cc0a3d/cdr-8-3.fig.10.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5d4f/11810459/c96d5366af93/cdr-8-3.fig.11.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5d4f/11810459/7d08125bea4c/cdr-8-3.fig.1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5d4f/11810459/e5eec2b4192b/cdr-8-3.fig.2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5d4f/11810459/c10fc2cffd6b/cdr-8-3.fig.3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5d4f/11810459/07d6082075e2/cdr-8-3.fig.4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5d4f/11810459/5d81be922020/cdr-8-3.fig.5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5d4f/11810459/ce5cb712619b/cdr-8-3.fig.6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5d4f/11810459/56eeacaac31d/cdr-8-3.fig.7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5d4f/11810459/a7e924a8a501/cdr-8-3.fig.8.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5d4f/11810459/11119fa68913/cdr-8-3.fig.9.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5d4f/11810459/efcda0cc0a3d/cdr-8-3.fig.10.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5d4f/11810459/c96d5366af93/cdr-8-3.fig.11.jpg

相似文献

[1]
Integrative multi-omics analysis for identifying novel therapeutic targets and predicting immunotherapy efficacy in lung adenocarcinoma.

Cancer Drug Resist. 2025-1-14

[2]
Comprehensive multi-omics integration uncovers mitochondrial gene signatures for prognosis and personalized therapy in lung adenocarcinoma.

J Transl Med. 2024-10-21

[3]
Integrated analysis of single-cell RNA-seq and bulk RNA-seq reveals immune suppression subtypes and establishes a novel signature for determining the prognosis in lung adenocarcinoma.

Cell Oncol (Dordr). 2024-10

[4]
Multi-omics characterization and machine learning of lung adenocarcinoma molecular subtypes to guide precise chemotherapy and immunotherapy.

Front Immunol. 2024-11-28

[5]
Multi‑omics identification of a signature based on malignant cell-associated ligand-receptor genes for lung adenocarcinoma.

BMC Cancer. 2024-9-12

[6]
Integrated multi-omics analysis and machine learning to refine molecular subtypes, prognosis, and immunotherapy in lung adenocarcinoma.

Funct Integr Genomics. 2024-6-27

[7]
Multiomics Analysis of Disulfidptosis Patterns and Integrated Machine Learning to Predict Immunotherapy Response in Lung Adenocarcinoma.

Curr Med Chem. 2024

[8]
Deciphering key roles of B cells in prognostication and tailored therapeutic strategies for lung adenocarcinoma: a multi-omics and machine learning approach towards predictive, preventive, and personalized treatment strategies.

EPMA J. 2024-12-17

[9]
Molecular classification reveals the sensitivity of lung adenocarcinoma to radiotherapy and immunotherapy: multi-omics clustering based on similarity network fusion.

Cancer Immunol Immunother. 2024-3-2

[10]
Exploring ribosome biogenesis in lung adenocarcinoma to advance prognostic methods and immunotherapy strategies.

J Transl Med. 2025-5-2

本文引用的文献

[1]
Predicting type 2 diabetes via machine learning integration of multiple omics from human pancreatic islets.

Sci Rep. 2024-6-25

[2]
Trametinib sensitizes KRAS-mutant lung adenocarcinoma tumors to PD-1/PD-L1 axis blockade via Id1 downregulation.

Mol Cancer. 2024-4-20

[3]
Chemical Scaffolds for the Clinical Development of Mutant-Selective and Reversible Fourth-Generation EGFR-TKIs in NSCLC.

ACS Chem Biol. 2024-4-19

[4]
RETRACTED: Refining molecular subtypes and risk stratification of ovarian cancer through multi-omics consensus portfolio and machine learning.

Environ Toxicol. 2025-3

[5]
Molecular classification reveals the sensitivity of lung adenocarcinoma to radiotherapy and immunotherapy: multi-omics clustering based on similarity network fusion.

Cancer Immunol Immunother. 2024-3-2

[6]
Single-cell transcriptome analysis reveals the association between histone lactylation and cisplatin resistance in bladder cancer.

Drug Resist Updat. 2024-3

[7]
MAFF confers vulnerability to cisplatin-based and ionizing radiation treatments by modulating ferroptosis and cell cycle progression in lung adenocarcinoma.

Drug Resist Updat. 2024-3

[8]
A TCF4-dependent gene regulatory network confers resistance to immunotherapy in melanoma.

Cell. 2024-1-4

[9]
Transcriptional analysis of landmark molecular pathways in lung adenocarcinoma results in a clinically relevant classification with potential therapeutic implications.

Mol Oncol. 2024-2

[10]
Alveolar Differentiation Drives Resistance to KRAS Inhibition in Lung Adenocarcinoma.

Cancer Discov. 2024-2-8

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索