Department of Otorhinolaryngology, Tianjin Medical University General Hospital, Tianjin, 300052, China.
Laboratory of Cancer Cell Biology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin, 300060, China.
Curr Med Chem. 2024;31(25):4034-4055. doi: 10.2174/0109298673313281240425050032.
Recent studies have unveiled disulfidptosis as a phenomenon intimately associated with cellular damage, heralding new avenues for exploring tumor cell dynamics. We aimed to explore the impact of disulfide cell death on the tumor immune microenvironment and immunotherapy in lung adenocarcinoma (LUAD).
We initially utilized pan-cancer transcriptomics to explore the expression, prognosis, and mutation status of genes related to disulfidptosis. Using the LUAD multi- -omics cohorts in the TCGA database, we explore the molecular characteristics of subtypes related to disulfidptosis. Employing various machine learning algorithms, we construct a robust prognostic model to predict immune therapy responses and explore the model's impact on the tumor microenvironment through single-cell transcriptome data. Finally, the biological functions of genes related to the prognostic model are verified through laboratory experiments.
Genes related to disulfidptosis exhibit high expression and significant prognostic value in various cancers, including LUAD. Two disulfidptosis subtypes with distinct prognoses and molecular characteristics have been identified, leading to the development of a robust DSRS prognostic model, where a lower risk score correlates with a higher response rate to immunotherapy and a better patient prognosis. NAPSA, a critical gene in the risk model, was found to inhibit the proliferation and migration of LUAD cells.
Our research introduces an innovative prognostic risk model predicated upon disulfidptosis genes for patients afflicted with Lung Adenocarcinoma (LUAD). This model proficiently forecasts the survival rates and therapeutic outcomes for LUAD patients, thereby delineating the high-risk population with distinctive immune cell infiltration and a state of immunosuppression. Furthermore, NAPSA can inhibit the proliferation and invasion capabilities of LUAD cells, thereby identifying new molecules for clinical targeted therapy.
最近的研究揭示了二硫键细胞死亡是与细胞损伤密切相关的现象,为探索肿瘤细胞动力学开辟了新途径。我们旨在探讨二硫键细胞死亡对肺腺癌(LUAD)肿瘤免疫微环境和免疫治疗的影响。
我们首先利用泛癌症转录组学来研究与二硫键细胞死亡相关的基因的表达、预后和突变状态。我们利用 TCGA 数据库中的 LUAD 多组学队列来研究与二硫键细胞死亡相关的亚型的分子特征。我们采用各种机器学习算法,构建了一个稳健的预后模型来预测免疫治疗反应,并通过单细胞转录组数据探索模型对肿瘤微环境的影响。最后,通过实验室实验验证与预后模型相关的基因的生物学功能。
与二硫键细胞死亡相关的基因在包括 LUAD 在内的各种癌症中表现出高表达和显著的预后价值。已经确定了两种具有不同预后和分子特征的二硫键细胞死亡亚型,从而开发了一个稳健的 DSRS 预后模型,其中较低的风险评分与免疫治疗的更高反应率和更好的患者预后相关。NAPSA 是风险模型中的一个关键基因,被发现抑制 LUAD 细胞的增殖和迁移。
我们的研究引入了一个基于二硫键细胞死亡基因的用于肺腺癌(LUAD)患者的创新预后风险模型。该模型能够准确预测 LUAD 患者的生存率和治疗效果,从而描绘出具有独特免疫细胞浸润和免疫抑制状态的高危人群。此外,NAPSA 可以抑制 LUAD 细胞的增殖和侵袭能力,从而为临床靶向治疗确定新的分子。