Wang Nan, Fang Tingxue, An Tinghui, Wang Yuhao, Li Jiaqi, Yu Shuming, Sun Honghai, Xiang Dong, Bo Xiangjie, Cai Kedi
Institute of Advanced Chemical Power Source, College of Chemistry and Materials Engineering, Bohai University, Jinzhou, Liaoning, 121013, China.
Institute of Ocean Research, Bohai University, Jinzhou, Liaoning, 121013, China.
Small. 2025 Feb;21(6):e2406516. doi: 10.1002/smll.202406516. Epub 2024 Dec 29.
Li-O batteries urgently needs high discharge capacity and stable cycling performance, requiring effective and reliable bifunctional catalysts for the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER). Herein, Hovenia acerba Lindl-like heterostructure composed of cobalt sulfide and tin dioxide supported on carbon substrate (CoS/SnO@C) is prepared via CO laser irradiation technology. The half-wave potential of CoS/SnO@C for the ORR is 0.88 V, while the overpotential of the OER at 10 mA cm is as low as 270 mV. The Li-O batteries employing the bifunctional CoS/SnO@C catalyst displays a high discharge specific capacity of 3332.25 mAh g and long cycling life of 226 cycles. Additionally, theory calculations demonstrate that the construction of heterostructure decreases energy barrier of the rate-determining step (RDS) for both ORR and OER. Notably, SnO behaves as the electronic promoter to optimize the electronic structure of heterostructure interface and triggers charge redistribution of CoS, which weakens the adsorption strength of the O-intermediates and allows to break the linear scaling relationship, thus further enhancing the catalytic performance of CoS/SnO@C. This research furnishes directions for the design of heterogeneous catalysts, highlighting its great potential for application in rechargeable Li-O batteries.
锂-氧电池迫切需要高放电容量和稳定的循环性能,这就需要用于氧还原反应(ORR)和析氧反应(OER)的有效且可靠的双功能催化剂。在此,通过CO激光辐照技术制备了由负载在碳基底上的硫化钴和二氧化锡组成的枳椇状异质结构(CoS/SnO@C)。CoS/SnO@C用于ORR的半波电位为0.88 V,而在10 mA cm时OER的过电位低至270 mV。采用双功能CoS/SnO@C催化剂的锂-氧电池显示出3332.25 mAh g的高放电比容量和226次循环的长循环寿命。此外,理论计算表明,异质结构的构建降低了ORR和OER的速率决定步骤(RDS)的能垒。值得注意的是,SnO作为电子促进剂优化了异质结构界面的电子结构并引发了CoS的电荷重新分布,这削弱了O中间体的吸附强度并打破了线性标度关系,从而进一步提高了CoS/SnO@C的催化性能。这项研究为非均相催化剂的设计提供了方向,突出了其在可充电锂-氧电池中的巨大应用潜力。