Suppr超能文献

利用空间数据基础设施改善尼日利亚阿南布拉州的艾滋病毒病例发现情况:一项干预前后研究

Improving HIV case finding using spatial data infrastructures in Anambra State, Nigeria: a pre-post intervention study.

作者信息

Ukueku Kevin O, Ukoaka Bonaventure M, Ugwuanyi Emmanuel A, Ajah Keziah U, Daniel Faithful M, Gbuchie Monica A, Alawa John A, Essien Emmanuel A, Imohi Philip

机构信息

Monitoring and Evaluation Unit, Achieving Health Nigeria Initiative, Awka, Nigeria.

Prevention, Care, and Treatment Unit, Achieving Health Nigeria Initiative, Awka, Nigeria.

出版信息

BMC Public Health. 2025 Feb 12;25(1):584. doi: 10.1186/s12889-025-21811-7.

Abstract

BACKGROUND

The heightened HIV prevalence in Nigeria is partly associated with challenges in accessing people living with HIV in geographically isolated and unidentified regions. Spatial Data Infrastructure (SDI) is an innovation that has shown promise for HIV case-finding in unidentified settlements. This study reports the use of SDI to improve HIV case identification in Anambra North Senatorial District, Nigeria.

METHODS

This study utilised a pre-post intervention study design to analyse data from the implementation of HIV testing services (HTS). Settlements for HTS were identified in the district using SDIs, such as microplans and hotspot maps. Community teams captured areas' names and geolocations using a custom application. Geographical Information Systems technology was overlayed on coordinates to generate microplans and hotspot maps, which were used for targeted tests and new case identification.

RESULTS

Our study showed varying trends across the periods when SDIs were utilised and when they were not. The use of SDI greatly enhanced HIV case identification and provided a strategic framework for HTS implementation. Overall, the period when SDI was used recorded relatively higher new cases than before. Local Government Areas with more rural settlements that leveraged SDI significantly upscaled their case identification.

CONCLUSIONS

SDI can facilitate HIV case identification. Our study revealed twice as many cases identified across the periods compared. Our pioneering use of SDI for HIV case finding in Nigeria offers promise for efficient HTS implementation in high-burden and yet-to-be-identified locations.

摘要

背景

尼日利亚艾滋病毒感染率居高不下,部分原因是在地理上偏远且身份不明的地区难以接触到艾滋病毒感染者。空间数据基础设施(SDI)是一项创新技术,已显示出在身份不明的定居点中寻找艾滋病毒病例的潜力。本研究报告了在尼日利亚阿南布拉北参议院选区使用SDI改善艾滋病毒病例识别的情况。

方法

本研究采用干预前后研究设计,分析艾滋病毒检测服务(HTS)实施过程中的数据。利用微观规划和热点地图等空间数据基础设施在该地区确定进行HTS的定居点。社区团队使用定制应用程序记录地区名称和地理位置。地理信息系统技术覆盖在坐标上生成微观规划和热点地图,用于有针对性的检测和新病例识别。

结果

我们的研究显示,在使用和未使用空间数据基础设施的不同时期呈现出不同趋势。使用SDI极大地提高了艾滋病毒病例识别率,并为HTS实施提供了战略框架。总体而言,使用SDI的时期记录的新病例相对比以前更多。利用SDI的农村定居点较多的地方政府区域显著提高了病例识别率。

结论

SDI有助于艾滋病毒病例识别。我们的研究显示,相比之下,各时期识别出的病例数量增加了一倍。我们在尼日利亚率先使用SDI进行艾滋病毒病例发现,为在高负担且尚未确定的地区高效实施HTS带来了希望。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4709/11823078/e7fb555241a7/12889_2025_21811_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验