Suppr超能文献

基于叶片症状的黄龙病检测的高光谱成像与机器学习

Hyperspectral Imaging and Machine Learning for Huanglongbing Detection on Leaf-Symptoms.

作者信息

Dong Ruihao, Shiraiwa Aya, Ichinose Katsuya, Pawasut Achara, Sreechun Kesaraporn, Mensin Sumalee, Hayashi Takefumi

机构信息

Faculty of Informatics, Kansai University, Osaka 569-1095, Japan.

Electrical Engineering and Computer Science, Tottori University, Tottori 680-8552, Japan.

出版信息

Plants (Basel). 2025 Feb 3;14(3):451. doi: 10.3390/plants14030451.

Abstract

Huanglongbing is one of the most destructive diseases of citrus worldwide. Infected trees die due to the absence of practical cures. Thus, the removal of HLB-infected trees is one of the principal HLB managements for the regulation of disease spread. Here, we propose a non-destructive HLB detection method based on hyperspectral leaf reflectance. In total, 72 hyperspectral leaf images were collected in an HLB-invaded citrus orchard in Thailand and each image was visually distinguished into either any HLB symptom appearance (symptomatic) or no symptoms (asymptomatic) on the leaf. Principal component analysis was applied on the hyperspectral data and revealed 16 key wavelengths at red-edge to near-infrared regions (715, 718, 721, 724, 727, 730, 733, 736, 930, 933, 936, 939, 942, 945, 957, and 997 nm) that were characteristically differentiated in the symptomatic group. Seven models learnt on the spectral data at these 16 wavelengths were examined for the potential to separate these two image groups: random forest, decision tree, support vector machine, k-nearest neighbor, gradient boosting, logistic regression, linear discriminant. F1-score was employed to select the best-fit model to distinguish the two categories: random forest achieved the best score of 99.8%, followed by decision tree and k-nearest neighbor. The reliability of the visual grouping was evaluated by nearest neighbor matching and permutation test. These three models separated the two image categories as precisely as PCR results, indicating their potential as alternative tool instead of PCR.

摘要

黄龙病是全球最具毁灭性的柑橘病害之一。由于缺乏有效的治疗方法,受感染的树木会死亡。因此,清除感染黄龙病的树木是控制疾病传播的主要黄龙病管理措施之一。在此,我们提出一种基于高光谱叶片反射率的无损黄龙病检测方法。在泰国一个受黄龙病侵袭的柑橘园中,总共收集了72张高光谱叶片图像,并且每张图像在视觉上被区分为叶片上有任何黄龙病症状表现(有症状)或无症状(无症状)。对高光谱数据进行主成分分析,揭示了在红边到近红外区域(715、718、721、724、727、730、733、736、930、933、936、939、942、945、957和997纳米)的16个关键波长,这些波长在有症状组中具有特征性差异。研究了在这16个波长的光谱数据上学习的7种模型区分这两个图像组的潜力:随机森林、决策树、支持向量机、k近邻、梯度提升、逻辑回归、线性判别分析。采用F1分数来选择最适合区分这两类的模型:随机森林获得了99.8%的最佳分数,其次是决策树和k近邻。通过最近邻匹配和置换检验评估视觉分组的可靠性。这三种模型对两个图像类别的区分与聚合酶链反应(PCR)结果一样精确,表明它们作为替代PCR的工具的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e8d4/11820286/f0d9043115a6/plants-14-00451-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验