Samaniego-Rojas Paulo, Boluda-Ruiz Rubén, Garrido-Balsells José María, Castillo-Vázquez Beatriz, Puerta-Notario Antonio, García-Zambrana Antonio
Telecommunication Research Institute (TELMA), Universidad de Málaga, E-29010 Málaga, Spain.
Sensors (Basel). 2025 Jan 24;25(3):695. doi: 10.3390/s25030695.
This work presents a novel approach to modeling an underwater optical wireless communications (UOWC) channel based on a deterministic analysis specifically for non-line-of-sight (NLOS) configurations. The model considers the presence of a wavy ocean surface, providing a more accurate representation of realistic conditions. By expanding the possibilities for communication in complex underwater environments, our model offers a comprehensive analysis of the ocean waves' impact. A significant achievement of this study is the capacity of the model to accurately compute the variable size of the width of the beam (footprint) on the receiver plane reflected by the sea surface and the time intervals during which the receiver remains illuminated. Additionally, the model determines the precise position of the reflected beam on the receiver plane and accurately identifies the time intervals during which communication is feasible, offering invaluable insight into the system performance under oceanic wave variability. The results confirmed that oceanic wave variability induces severe misalignment in optical links, creating intermittent opportunities for effective communication. The optical-geometric analysis contributed significantly to understanding the novel impact of ocean waves on NLOS-UOWC systems. These findings enhance the preliminary considerations in NLOS link design, particularly in scenarios with autonomous underwater vehicles in constant motion, aiding in the reduction of pointing errors.
这项工作提出了一种基于确定性分析的新型方法,用于对水下光无线通信(UOWC)信道进行建模,特别针对非视距(NLOS)配置。该模型考虑了波浪起伏的海洋表面,能更准确地呈现实际情况。通过拓展复杂水下环境中的通信可能性,我们的模型对海浪的影响进行了全面分析。这项研究的一个重要成果是,该模型能够精确计算海面反射到接收平面上的光束宽度(光斑)的可变大小以及接收器保持被照亮的时间间隔。此外,该模型还能确定反射光束在接收平面上的精确位置,并准确识别通信可行的时间间隔,为了解海浪变化情况下的系统性能提供了宝贵的见解。结果证实,海浪变化会导致光链路严重失准,产生间歇性的有效通信机会。光学几何分析对理解海浪对NLOS-UOWC系统的新影响有很大帮助。这些发现加强了NLOS链路设计中的初步考虑,特别是在自主水下航行器处于持续运动的场景中,有助于减少指向误差。