Ma Shaobo, Chen Yongkang, Li Zhefan, Chen Junlin, Zhong Xiaolan
College of Resources and Environment, South China Agricultural University, Guangzhou 510642, China.
Sensors (Basel). 2025 Jan 24;25(3):714. doi: 10.3390/s25030714.
The application of LiDAR technology in extracting individual trees and stand parameters plays a crucial role in forest surveys. Accurate identification of individual tree trunks is a critical foundation for subsequent parameter extraction. For LiDAR-acquired forest point cloud data, existing two-dimensional (2D) plane-based algorithms for tree trunk detection often suffer from spatial information loss, resulting in reduced accuracy, particularly for tilted trees. While cylinder fitting algorithms provide a three-dimensional (3D) solution for trunk detection, their performance in complex forest environments remains limited due to sensitivity to parameters like distance thresholds. To address these challenges, this study proposes an improved individual tree trunk detection algorithm, Random Sample Consensus Cylinder Fitting (RANSAC-CyF), specifically optimized for detecting cylindrical tree trunks. Validated in three forest plots with varying complexities in Tianhe District, Guangzhou, the algorithm demonstrated significant advantages in the inlier rate, detection success rate, and robustness for tilted trees. The study showed the following results: (1) The average difference between the inlier rates of tree trunks and non-tree points for the three sample plots using RANSAC-CyF were 0.59, 0.63, and 0.52, respectively, which were significantly higher than those using the Least Squares Circle Fitting (LSCF) algorithm and the Random Sample Consensus Circle Fitting (RANSAC-CF) algorithm ( < 0.05). (2) RANSAC-CyF required only 2 and 8 clusters to achieve a 100% detection success rate in Plot 1 and Plot 2, while the other algorithms needed 26 and 40 clusters. (3) The effective distance threshold range of RANSAC-CyF was more than twice that of the comparison algorithms, maintaining stable inlier rates above 0.9 across all tilt angles. (4) The RANSAC-CyF algorithm still achieved good detection performance in the challenging Plot 3. Together, the other two algorithms failed to detect. The findings highlight the RANSAC-CyF algorithm's superior accuracy, robustness, and adaptability in complex forest environments, significantly improving the efficiency and precision of individual tree trunk detection for forestry surveys and ecological research.
激光雷达技术在提取单株树木和林分参数方面的应用在森林调查中起着至关重要的作用。准确识别单株树木的树干是后续参数提取的关键基础。对于激光雷达获取的森林点云数据,现有的基于二维(2D)平面的树干检测算法往往存在空间信息丢失的问题,导致精度降低,特别是对于倾斜树木。虽然圆柱拟合算法为树干检测提供了三维(3D)解决方案,但由于对距离阈值等参数敏感,其在复杂森林环境中的性能仍然有限。为了应对这些挑战,本研究提出了一种改进的单株树木树干检测算法,即随机抽样一致性圆柱拟合(RANSAC-CyF),专门针对检测圆柱形树干进行了优化。在广州天河区三个复杂度不同的森林样地中进行验证,该算法在内点率、检测成功率和对倾斜树木的鲁棒性方面表现出显著优势。研究结果如下:(1)使用RANSAC-CyF的三个样地中,树干内点率与非树点内点率的平均差值分别为0.59、0.63和0.52,显著高于使用最小二乘圆拟合(LSCF)算法和随机抽样一致性圆拟合(RANSAC-CF)算法的差值(<0.05)。(2)RANSAC-CyF在样地1和样地2中仅需2个和8个聚类就能达到100%的检测成功率,而其他算法则需要26个和40个聚类。(3)RANSAC-CyF的有效距离阈值范围是比较算法的两倍多,在所有倾斜角度下内点率均保持在0.9以上且稳定。(4)RANSAC-CyF算法在具有挑战性的样地3中仍取得了良好的检测性能。而其他两种算法则未能检测到。这些发现突出了RANSAC-CyF算法在复杂森林环境中的卓越准确性、鲁棒性和适应性,显著提高了林业调查和生态研究中单株树木树干检测的效率和精度。