Suppr超能文献

基于仪器的电子鼻中的信号预处理可生成简洁的预测模型:应用于橄榄油质量控制。

Signal Preprocessing in Instrument-Based Electronic Noses Leads to Parsimonious Predictive Models: Application to Olive Oil Quality Control.

作者信息

Fernandez Luis, Oller-Moreno Sergio, Fonollosa Jordi, Garrido-Delgado Rocío, Arce Lourdes, Martín-Gómez Andrés, Marco Santiago, Pardo Antonio

机构信息

Department of Electronics and Biomedical Engineering, Universitat de Barcelona, 08028 Barcelona, Spain.

Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, 08028 Barcelona, Spain.

出版信息

Sensors (Basel). 2025 Jan 25;25(3):737. doi: 10.3390/s25030737.

Abstract

Gas sensor-based electronic noses (e-noses) have gained considerable attention over the past thirty years, leading to the publication of numerous research studies focused on both the development of these instruments and their various applications. Nonetheless, the limited specificity of gas sensors, along with the common requirement for chemical identification, has led to the adaptation and incorporation of analytical chemistry instruments into the e-nose framework. Although instrument-based e-noses exhibit greater specificity to gasses than traditional ones, they still produce data that require correction in order to build reliable predictive models. In this work, we introduce the use of a multivariate signal processing workflow for datasets from a multi-capillary column ion mobility spectrometer-based e-nose. Adhering to the electronic nose philosophy, these workflows prioritized untargeted approaches, avoiding dependence on traditional peak integration techniques. A comprehensive validation process demonstrates that the application of this preprocessing strategy not only mitigates overfitting but also produces parsimonious models, where classification accuracy is maintained with simpler, more interpretable structures. This reduction in model complexity offers significant advantages, providing more efficient and robust models without compromising predictive performance. This strategy was successfully tested on an olive oil dataset, showcasing its capability to improve model parsimony and generalization performance.

摘要

在过去三十年中,基于气体传感器的电子鼻(e-noses)受到了广泛关注,引发了众多专注于这些仪器开发及其各种应用的研究报告的发表。尽管如此,气体传感器的特异性有限,以及化学识别的普遍要求,导致分析化学仪器被改编并纳入电子鼻框架。虽然基于仪器的电子鼻对气体的特异性比传统电子鼻更高,但它们仍然会产生需要校正的数据,以便构建可靠的预测模型。在这项工作中,我们介绍了一种多元信号处理工作流程,用于处理基于多毛细管柱离子迁移谱仪的电子鼻数据集。遵循电子鼻理念,这些工作流程优先采用非靶向方法,避免依赖传统的峰积分技术。全面的验证过程表明,这种预处理策略的应用不仅减轻了过拟合,还产生了简约模型,在保持分类准确性的同时具有更简单、更易于解释的结构。模型复杂性的降低具有显著优势,能够提供更高效、更稳健的模型,同时不影响预测性能。该策略在橄榄油数据集上成功进行了测试,展示了其提高模型简约性和泛化性能的能力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f023/11820981/f844c519b689/sensors-25-00737-g001.jpg

相似文献

2
Application of an electronic tongue as a single-run tool for olive oils' physicochemical and sensory simultaneous assessment.
Talanta. 2019 May 15;197:363-373. doi: 10.1016/j.talanta.2019.01.055. Epub 2019 Jan 15.
3
E-nose, e-tongue and e-eye for edible olive oil characterization and shelf life assessment: A powerful data fusion approach.
Talanta. 2018 May 15;182:131-141. doi: 10.1016/j.talanta.2018.01.096. Epub 2018 Feb 2.
4
Determination of volatile compounds by GC-IMS to assign the quality of virgin olive oil.
Food Chem. 2015 Nov 15;187:572-9. doi: 10.1016/j.foodchem.2015.04.082. Epub 2015 Apr 24.
6
Chemical QR Code: A simple and disposable paper-based optoelectronic nose for the identification of olive oil odor.
Food Chem. 2021 Jul 15;350:129243. doi: 10.1016/j.foodchem.2021.129243. Epub 2021 Feb 9.
7
Advances in artificial olfaction: sensors and applications.
Talanta. 2014 Jun;124:95-105. doi: 10.1016/j.talanta.2014.02.016. Epub 2014 Feb 25.
8
Recent advances in signal processing algorithms for electronic noses.
Talanta. 2025 Feb 1;283:127140. doi: 10.1016/j.talanta.2024.127140. Epub 2024 Oct 31.
9
Perception of olive oils sensory defects using a potentiometric taste device.
Talanta. 2018 Jan 1;176:610-618. doi: 10.1016/j.talanta.2017.08.066. Epub 2017 Aug 31.
10
Laser-based classification of olive oils assisted by machine learning.
Food Chem. 2020 Jan 1;302:125329. doi: 10.1016/j.foodchem.2019.125329. Epub 2019 Aug 5.

本文引用的文献

1
Rapid Detection of Trace Nitro-Explosives under UV Irradiation by Electronic Nose with Neural Networks.
ACS Appl Mater Interfaces. 2023 Aug 2;15(30):36539-36549. doi: 10.1021/acsami.3c06498. Epub 2023 Jul 19.
2
Environmental Engineering Applications of Electronic Nose Systems Based on MOX Gas Sensors.
Sensors (Basel). 2023 Jun 19;23(12):5716. doi: 10.3390/s23125716.
3
gc-ims-tools - A new Python package for chemometric analysis of GC-IMS data.
Food Chem. 2022 Nov 15;394:133476. doi: 10.1016/j.foodchem.2022.133476. Epub 2022 Jun 13.
9
Overoptimism in cross-validation when using partial least squares-discriminant analysis for omics data: a systematic study.
Anal Bioanal Chem. 2018 Sep;410(23):5981-5992. doi: 10.1007/s00216-018-1217-1. Epub 2018 Jun 29.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验