Zhuo Shi, Bai Xiaofeng, Han Junlong, Ma Jianpeng, Sun Bojun, Li Chengwei, Zhan Liwei
Aero Engine Corporation of China Harbin Bearing Company, Ltd., Harbin 150500, China.
School of Instrument Science and Engineering, Harbin Institute of Technology, Harbin 150001, China.
Sensors (Basel). 2025 Jan 31;25(3):873. doi: 10.3390/s25030873.
This paper proposes an innovative bearing fault diagnosis method aimed at enhancing the accuracy and effectiveness of transfer learning. The innovation lies in the signal preprocessing stage, where a Noise Eliminated Intrinsic Time-Scale Decomposition (NEITD) algorithm is introduced. This algorithm adaptively decomposes unified-phase sine wave signals to effectively extract the geometric mean of the intrinsic rotational component, and selects the optimal decomposition result based on the orthogonality index, significantly improving the quality and reliability of the signals. In addition, fault diagnosis parameters are adaptively optimized using an improved adaptive deep transfer learning (ADTL) network combined with the Jellyfish Search (JS) algorithm, further enhancing diagnostic performance. By innovatively combining signal noise reduction, feature extraction, and deep learning optimization techniques, this method significantly improves fault diagnosis accuracy and robustness. Comparative simulations and experimental analyses show that the NEITD algorithm outperforms traditional methods in both signal decomposition performance and diagnostic accuracy. Furthermore, the NEITD-ADTL-JS method demonstrates stronger sensitivity and recognition capabilities across various fault types, achieving a 5.29% improvement in accuracy.
本文提出了一种创新的轴承故障诊断方法,旨在提高迁移学习的准确性和有效性。创新之处在于信号预处理阶段,引入了噪声消除本征时间尺度分解(NEITD)算法。该算法自适应地分解同相正弦波信号,以有效提取本征旋转分量的几何平均值,并根据正交性指标选择最优分解结果,显著提高了信号的质量和可靠性。此外,使用改进的自适应深度迁移学习(ADTL)网络结合水母搜索(JS)算法对故障诊断参数进行自适应优化,进一步提升了诊断性能。通过创新性地结合信号降噪、特征提取和深度学习优化技术,该方法显著提高了故障诊断的准确性和鲁棒性。对比仿真和实验分析表明,NEITD算法在信号分解性能和诊断准确性方面均优于传统方法。此外,NEITD-ADTL-JS方法在各种故障类型中表现出更强的灵敏度和识别能力,准确率提高了5.29%。