Smith Jonathan S
Neurotechno Ltd, Marlow, Buckinghamshire SL7 1SJ, UK.
J R Soc Interface. 2005 Dec 22;2(5):443-54. doi: 10.1098/rsif.2005.0058.
This paper describes the local mean decomposition (LMD), a new iterative approach to demodulating amplitude and frequency modulated signals. The new method decomposes such signals into a set of functions, each of which is the product of an envelope signal and a frequency modulated signal from which a time-varying instantaneous frequency can be derived. The LMD method can be used to analyse a wide variety of natural signals such as electrocardiograms, functional magnetic resonance imaging data, and earthquake data. The paper presents the results of applying LMD to a set of scalp electroencephalogram (EEG) visual perception data. The LMD instantaneous frequency and energy structure of the EEG is examined, and compared with results obtained using the spectrogram. The nature of visual perception is investigated by measuring the degree of EEG instantaneous phase concentration that occurs following stimulus onset over multiple trials. The analysis suggests that there is a statistically significant difference between the theta phase concentrations of the perception and no perception EEG data.
本文介绍了局部均值分解(LMD),这是一种用于解调调幅和调频信号的新的迭代方法。该新方法将此类信号分解为一组函数,每个函数都是一个包络信号与一个调频信号的乘积,从中可以导出时变瞬时频率。LMD方法可用于分析各种自然信号,如心电图、功能磁共振成像数据和地震数据。本文展示了将LMD应用于一组头皮脑电图(EEG)视觉感知数据的结果。研究了EEG的LMD瞬时频率和能量结构,并与使用频谱图获得的结果进行了比较。通过测量多次试验中刺激开始后发生的EEG瞬时相位集中程度来研究视觉感知的本质。分析表明,感知和未感知EEG数据的θ相位集中之间存在统计学上的显著差异。