Suppr超能文献

用于社交媒体中抑郁症和自杀检测的改进型鹈鹕优化算法

Dwarf Updated Pelican Optimization Algorithm for Depression and Suicide Detection from Social Media.

作者信息

Agarwal Divya, Singh Vijay, Singh Ashwini Kumar, Madan Parul

机构信息

Department of Computer Science and Engineering, Graphic Era Deemed to Be University, 566/6 Bell Road, Clement Town, Dehradun, Uttarakhand, 248002, India.

出版信息

Psychiatr Q. 2025 Feb 13. doi: 10.1007/s11126-024-10111-9.

Abstract

Depression and suicidal thoughts are significant global health concerns typically diagnosed through clinical assessments, which can be constrained by issues of accessibility and stigma. However, current methods often face challenges with this variability and struggle to integrate different models effectively and generalize across different settings, leading to reduced effectiveness when applied to new contexts, resulting in less accurate outcomes. This research presents a novel approach to suicide and depression detection from social media (SADDSM) by addressing the challenges of variability and model generalization. The process involves four key stages: first, preprocessing the input data through stop word removal, tokenization, and stemming to improve text clarity; then, extracting relevant features such as TF-IDF, style features, and enhanced word2vec features to capture semantic relationships and emotional cues. A modified mutual information score is used for feature fusion, selecting the most informative features. Subsequently, deep learning models like RNN, DBN, and improved LSTM are stacked to form an ensemble model that boosts accuracy while reducing overfitting. The performance is further optimized using the Dwarf Updated Pelican optimization algorithm (DU-POA) to fine-tune model weights, achieving an impressive 0.962 accuracy at 90% training data, outperforming existing techniques.

摘要

抑郁症和自杀念头是重大的全球健康问题,通常通过临床评估来诊断,而临床评估可能会受到可及性和污名化问题的限制。然而,当前方法在应对这种变异性时常常面临挑战,难以有效地整合不同模型并在不同环境中进行通用化,导致应用于新环境时效果降低,结果准确性也降低。本研究提出了一种从社交媒体进行自杀和抑郁症检测的新方法(SADDSM),以应对变异性和模型通用化的挑战。该过程涉及四个关键阶段:首先,通过停用词去除、词元化和词干提取对输入数据进行预处理,以提高文本清晰度;然后,提取相关特征,如TF-IDF特征、风格特征和增强的词向量特征,以捕捉语义关系和情感线索。使用改进的互信息分数进行特征融合,选择信息量最大的特征。随后,将RNN、DBN和改进的LSTM等深度学习模型堆叠起来,形成一个集成模型,提高准确性同时减少过拟合。使用侏儒更新鹈鹕优化算法(DU-POA)进一步优化性能,以微调模型权重,在90%的训练数据上实现了令人印象深刻的0.962的准确率,优于现有技术。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验