Suppr超能文献

使用文本和表情符号进行情感分析的混合深度学习方法。

Hybrid deep learning approach for sentiment analysis using text and emojis.

作者信息

Kuruva Arjun, Chiluka C Nagaraju

机构信息

Department of Computer Science and Engineering, YSR Engineering College of Yogi Vemana University, Proddatur, Andhra Pradesh, India.

出版信息

Network. 2024 May 29:1-30. doi: 10.1080/0954898X.2024.2349275.

Abstract

Sentiment Analysis (SA) is a technique for categorizing texts based on the sentimental polarity of people's opinions. This paper introduces a sentiment analysis (SA) model with text and emojis. The two preprocessed data's are data with text and emojis and text without emojis. Feature extraction consists text features and text with emojis features. The text features are features like N-grams, modified Term Frequency-Inverse Document Frequency (TF-IDF), and Bag-of-Words (BoW) features extracted from the text. In classification, CNN (Conventional Neural Network) and MLP (Multi-Layer Perception) use emojis and text-based SA. The CNN weight is optimized by a new Electric fish Customized Shark Smell Optimization (ECSSO) Algorithm. Similarly, the text-based SA is carried out by hybrid Long Short-Term Memory (LSTM) and Recurrent Neural Network (RNN) classifiers. The bagged data are given as input to the classification process via RNN and LSTM. Here, the weight of LSTM is optimized by the suggested ECSSO algorithm. Then, the mean of LSTM and RNN determines the final output. The specificity of the developed scheme is 29.01%, 42.75%, 23.88%,22.07%, 25.31%, 18.42%, 5.68%, 10.34%, 6.20%, 6.64%, and 6.84% better for 70% than other models. The efficiency of the proposed scheme is computed and evaluated.

摘要

情感分析(SA)是一种基于人们意见的情感极性对文本进行分类的技术。本文介绍了一种结合文本和表情符号的情感分析(SA)模型。预处理的两组数据分别是带有文本和表情符号的数据以及不带表情符号的文本数据。特征提取包括文本特征和带表情符号文本的特征。文本特征是从文本中提取的诸如N-gram、改进的词频-逆文档频率(TF-IDF)和词袋(BoW)等特征。在分类中,卷积神经网络(CNN)和多层感知器(MLP)使用基于表情符号和文本的SA。CNN的权重通过一种新的电鱼定制鲨鱼嗅觉优化(ECSSO)算法进行优化。类似地,基于文本的SA由混合长短期记忆(LSTM)和递归神经网络(RNN)分类器执行。经过打包的数据通过RNN和LSTM作为输入提供给分类过程。在此,LSTM的权重通过建议的ECSSO算法进行优化。然后,LSTM和RNN的平均值确定最终输出。所开发方案的特异性在70%的情况下比其他模型分别高出29.01%、42.75%、23.88%、22.07%、25.31%、18.42%、5.68%、10.34%、6.20%、6.64%和6.84%。对所提方案的效率进行了计算和评估。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验