Suppr超能文献

在接受中等剂量他汀类药物治疗的冠心病患者中使用机器学习预测低密度脂蛋白胆固醇目标达成情况。

Predicting low density lipoprotein cholesterol target attainment using machine learning in patients with coronary artery disease receiving moderate-dose statin therapy.

作者信息

Han Jiye, Kim Yunha, Kang Hee Jun, Seo Jiahn, Choi Heejung, Kim Minkyoung, Kee Gaeun, Park Seohyun, Ko Soyoung, Jung HyoJe, Kim Byeolhee, Jun Tae Joon, Kim Young-Hak

机构信息

Department of Information Medicine, Asan Medical Center, 88, Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Republic of Korea.

Department of Medical Science, Asan Medical Center, Asan Medical Institute of Convergence Science and Technology, University of Ulsan College of Medicine, Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Republic of Korea.

出版信息

Sci Rep. 2025 Feb 13;15(1):5346. doi: 10.1038/s41598-025-88693-y.

Abstract

Low-density lipoprotein cholesterol (LDL-C) is an important factor in the development of cardiovascular disease, making its management a key aspect of cardiovascular health. While high-dose statin therapy is often recommended for LDL-C reduction, careful consideration is needed due to patient-specific factors and potential side effects. This study aimed to develop a machine learning (ML) model to estimate the likelihood of achieving target LDL-C levels in patients hospitalized for coronary artery disease and treated with moderate-dose statins. The predictive performance of three ML models, including Extreme Gradient Boosting (XGBoost), Random Forest, and Logistic Regression, was evaluated using electronic medical records from the Asan Medical Center in Seoul across six performance metrics. Additionally, all three models achieved an average AUROC of 0.695 despite reducing features by over 43%. SHAP analysis was conducted to identify key features influencing model predictions, aiming insights into patient characteristics associated with achieving LDL-C targets. This study suggests that ML-based approaches may help identify patients likely to benefit from moderate-dose statins, potentially supporting personalized treatment strategies and clinical decision-making for LDL-C management.

摘要

低密度脂蛋白胆固醇(LDL-C)是心血管疾病发生发展的一个重要因素,因此对其进行管理是心血管健康的关键环节。虽然通常建议采用大剂量他汀类药物治疗来降低LDL-C,但由于患者的个体因素和潜在副作用,需要谨慎考虑。本研究旨在开发一种机器学习(ML)模型,以估计因冠状动脉疾病住院并接受中等剂量他汀类药物治疗的患者达到LDL-C目标水平的可能性。使用首尔峨山医院的电子病历,通过六个性能指标评估了三种ML模型(包括极端梯度提升(XGBoost)、随机森林和逻辑回归)的预测性能。此外,尽管特征减少了43%以上,但所有这三种模型的平均受试者工作特征曲线下面积(AUROC)仍达到了0.695。进行了SHAP分析以识别影响模型预测的关键特征,旨在深入了解与实现LDL-C目标相关的患者特征。本研究表明,基于ML的方法可能有助于识别可能从中等剂量他汀类药物中获益的患者,潜在地支持LDL-C管理的个性化治疗策略和临床决策。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f9a1/11825908/4b884823a5c6/41598_2025_88693_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验