Suppr超能文献

通过呼吸感应体积描记法、胸阻抗、加速度计和陀螺仪进行语音检测:一项基于机器学习的比较研究。

Speech Detection via Respiratory Inductance Plethysmography, Thoracic Impedance, Accelerometers, and Gyroscopes: A Machine Learning-Informed Comparative Study.

作者信息

Saygin Melisa, Schoenmakers Myrte, Gevonden Martin, de Geus Eco

机构信息

Department of Biological Psychology, VU Amsterdam, Amsterdam, the Netherlands.

Amsterdam Public Health Research Institute, Amsterdam UMC, Amsterdam, the Netherlands.

出版信息

Psychophysiology. 2025 Feb;62(2):e70021. doi: 10.1111/psyp.70021.

Abstract

Speech production interferes with the measurement of changes in cardiac vagal activity during acute stress by attenuating the expected drop in heart rate variability. Speech also induces cardiac sympathetic changes similar to those induced by psychological stress. In the laboratory, confounding of physiological stress reactivity by speech may be controlled experimentally. In ambulatory assessments, however, detection of speech episodes would be necessary to separate the physiological effects of psychosocial stress from those of speech. Using machine learning (https://osf.io/bk9nf), we trained and tested speech classification models on data from 56 participants (ages 18-39) under controlled laboratory conditions. They were equipped with privacy-secure wearables measuring thoracoabdominal respiratory inductance plethysmography (RIP from a single and a dual-band set-up), thoracic impedance pneumography, and an upper sternum positioned unit with triaxial accelerometers and gyroscopes. Following an 80/20 train-test split, nested cross-validations were run with the machine learning algorithms XGBoost, gradient boosting, random forest, and logistic regression on the training set to get generalized performance estimates. Speech classification by the best model per method was then validated in the test set. Speech versus no-speech classification performance (AUC) for both nested cross-validation and test set predictions was excellent for thorax-abdomen RIP (nested cross-validation: 96.6%, test set prediction: 98.5%), thorax-only RIP (97.5%, 99.1%), impedance (97.0%, 97.8%), and accelerometry (99.3%, 99.6%). The sternal accelerometer method outperformed others. These open-access models leveraging biosignals have the potential to also work in daily life settings. This could enhance the trustworthiness of ambulatory psychophysiology, by enabling detection of speech and controlling for its confounding effects on physiology.

摘要

言语产生会通过减弱预期的心率变异性下降来干扰急性应激期间心脏迷走神经活动变化的测量。言语还会诱发与心理应激所诱发的类似的心脏交感神经变化。在实验室中,言语对生理应激反应性的干扰可以通过实验进行控制。然而,在动态评估中,有必要检测言语发作,以便将心理社会应激的生理影响与言语的生理影响区分开来。我们使用机器学习(https://osf.io/bk9nf),在受控实验室条件下,对56名参与者(年龄在18 - 39岁之间)的数据训练并测试了言语分类模型。他们配备了具有隐私安全功能的可穿戴设备,用于测量胸腹呼吸感应体积描记法(单波段和双波段设置的RIP)、胸阻抗呼吸描记法,以及一个位于胸骨上部的单元,该单元带有三轴加速度计和陀螺仪。按照80/20的训练 - 测试划分,对训练集使用机器学习算法XGBoost、梯度提升、随机森林和逻辑回归进行嵌套交叉验证,以获得广义性能估计。然后在测试集中对每种方法的最佳模型进行言语分类验证。对于胸腹RIP(嵌套交叉验证:96.6%,测试集预测:98.5%)、仅胸部RIP(97.5%,99.1%)、阻抗(97.0%,97.8%)和加速度测量(99.3%,99.6%),嵌套交叉验证和测试集预测的言语与非言语分类性能(AUC)都非常出色。胸骨加速度计方法表现优于其他方法。这些利用生物信号的开放获取模型有可能在日常生活环境中也发挥作用。这可以通过能够检测言语并控制其对生理的混杂影响,来提高动态心理生理学的可信度。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d4da/11826986/1d6093df0466/PSYP-62-e70021-g005.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验