Brenig Andreas, Fischer Jörg W A, Klose Daniel, Jeschke Gunnar, van Bokhoven Jeroen A, Sushkevich Vitaly L
Institute for Chemical and Bioengineering, ETH Zurich, Vladimir-Prelog-Weg 1-5/10, Zurich, 8093, Switzerland.
Paul Scherrer Institute, Center for Energy and Environmental Sciences, Forschungsstrasse 111, Villigen, 5232, Switzerland.
Adv Sci (Weinh). 2025 Apr;12(13):e2413870. doi: 10.1002/advs.202413870. Epub 2025 Feb 14.
The evolution of active sites in Cu-zeolites for the CH-to-CHOH conversion has been investigated during oxidative treatment in O. Three samples with different frameworks but comparable Cu loadings and Si/Al ratios have been prepared to assess the influence of topology on material oxidizability and the nature of the generated Cu(II) species. Complementary spectroscopic studies highlight that isomeric Cu(II) centers hosted within different topologies are characterized by distinct formation rates. In turn, the framework-specific kinetics of Cu(II) site generation regulate the overall oxidation potential of the individual zeolites. Apart from the topology, the formation rate of different Cu(II) species is governed by their specific structure, with dimeric Cu(II) centers ([Cu(µ-O)]) being generated faster than monomeric ([CuOH], Cu) ones. Elevated temperatures accelerate the evolution of Cu(II) monomers but cause [Cu(µ-O)] to undergo autoreduction. The reversibility of this process is framework-dependent. Consequently, even though two types of [Cu(µ-O)] form at low temperatures in each material, only specific ones remain after high-temperature treatment. The autoreduction of [Cu(µ-O)] is accompanied by its transient reduction by hydrocarbon residues, originating from the preceding treatment in CH. The oxidative decomposition of these impurities yields HO, which adsorbs on [Cu(µ-O)] masks their spectroscopic fingerprints, and renders them inactive.
在氧气中进行氧化处理的过程中,研究了用于将CH转化为CHOH的铜沸石中活性位点的演变。制备了三种具有不同骨架但铜负载量和硅铝比相当的样品,以评估拓扑结构对材料氧化性以及生成的铜(II)物种性质的影响。补充光谱研究表明,不同拓扑结构中存在的异构铜(II)中心具有不同的形成速率。反过来,铜(II)位点生成的骨架特异性动力学调节了各个沸石的整体氧化电位。除了拓扑结构外,不同铜(II)物种的形成速率还受其特定结构的控制,二聚体铜(II)中心([Cu(µ-O)])的生成速度比单体([CuOH],Cu)快。升高的温度加速了铜(II)单体的演变,但导致[Cu(µ-O)]发生自动还原。这个过程的可逆性取决于骨架。因此,尽管每种材料在低温下都会形成两种类型的[Cu(µ-O)],但高温处理后只有特定的[Cu(µ-O)]会保留下来。[Cu(µ-O)]的自动还原伴随着其被烃类残基的瞬时还原,这些烃类残基源于之前在CH中的处理。这些杂质的氧化分解产生HO,它吸附在[Cu(µ-O)]上,掩盖了它们的光谱指纹,使其失去活性。