Suppr超能文献

铜交换沸石上甲烷制乙酸:位点特异性羰基化反应的机理见解

Methane to acetic acid over Cu-exchanged zeolites: mechanistic insights from a site-specific carbonylation reaction.

作者信息

Narsimhan Karthik, Michaelis Vladimir K, Mathies Guinevere, Gunther William R, Griffin Robert G, Román-Leshkov Yuriy

机构信息

Department of Chemical Engineering, Massachusetts Institute of Technology , Cambridge, Massachusetts 02139, United States.

出版信息

J Am Chem Soc. 2015 Feb 11;137(5):1825-32. doi: 10.1021/ja5106927. Epub 2015 Feb 2.

Abstract

The selective low temperature oxidation of methane is an attractive yet challenging pathway to convert abundant natural gas into value added chemicals. Copper-exchanged ZSM-5 and mordenite (MOR) zeolites have received attention due to their ability to oxidize methane into methanol using molecular oxygen. In this work, the conversion of methane into acetic acid is demonstrated using Cu-MOR by coupling oxidation with carbonylation reactions. The carbonylation reaction, known to occur predominantly in the 8-membered ring (8MR) pockets of MOR, is used as a site-specific probe to gain insight into important mechanistic differences existing between Cu-MOR and Cu-ZSM-5 during methane oxidation. For the tandem reaction sequence, Cu-MOR generated drastically higher amounts of acetic acid when compared to Cu-ZSM-5 (22 vs 4 μmol/g). Preferential titration with sodium showed a direct correlation between the number of acid sites in the 8MR pockets in MOR and acetic acid yield, indicating that methoxy species present in the MOR side pockets undergo carbonylation. Coupled spectroscopic and reactivity measurements were used to identify the genesis of the oxidation sites and to validate the migration of methoxy species from the oxidation site to the carbonylation site. Our results indicate that the Cu(II)-O-Cu(II) sites previously associated with methane oxidation in both Cu-MOR and Cu-ZSM-5 are oxidation active but carbonylation inactive. In turn, combined UV-vis and EPR spectroscopic studies showed that a novel Cu(2+) site is formed at Cu/Al <0.2 in MOR. These sites oxidize methane and promote the migration of the product to a Brønsted acid site in the 8MR to undergo carbonylation.

摘要

甲烷的选择性低温氧化是一种将丰富的天然气转化为高附加值化学品的诱人但具有挑战性的途径。铜交换的ZSM-5和丝光沸石(MOR)因其能够使用分子氧将甲烷氧化为甲醇的能力而受到关注。在这项工作中,通过将氧化与羰基化反应耦合,使用Cu-MOR证明了甲烷向乙酸的转化。已知主要发生在MOR的八元环(8MR)孔穴中的羰基化反应,被用作位点特异性探针,以深入了解甲烷氧化过程中Cu-MOR和Cu-ZSM-5之间存在的重要机理差异。对于串联反应序列,与Cu-ZSM-5相比,Cu-MOR产生的乙酸量大幅增加(22 μmol/g对4 μmol/g)。用钠进行的优先滴定表明,MOR中8MR孔穴中的酸位数量与乙酸产率之间存在直接相关性,这表明MOR侧孔穴中存在的甲氧基物种会发生羰基化。结合光谱和反应性测量来确定氧化位点的起源,并验证甲氧基物种从氧化位点向羰基化位点的迁移。我们的结果表明,先前与Cu-MOR和Cu-ZSM-5中的甲烷氧化相关的Cu(II)-O-Cu(II)位点具有氧化活性但羰基化无活性。反过来,结合紫外可见光谱和电子顺磁共振光谱研究表明,在MOR中Cu/Al <0.2时形成了一种新型的Cu(2+)位点。这些位点氧化甲烷并促进产物迁移到8MR中的布朗斯特酸位点以进行羰基化。

相似文献

1
Methane to acetic acid over Cu-exchanged zeolites: mechanistic insights from a site-specific carbonylation reaction.
J Am Chem Soc. 2015 Feb 11;137(5):1825-32. doi: 10.1021/ja5106927. Epub 2015 Feb 2.
3
Theoretical Overview of Methane Hydroxylation by Copper-Oxygen Species in Enzymatic and Zeolitic Catalysts.
Acc Chem Res. 2018 Oct 16;51(10):2382-2390. doi: 10.1021/acs.accounts.8b00236. Epub 2018 Sep 12.
4
Continuous Partial Oxidation of Methane to Methanol Catalyzed by Diffusion-Paired Copper Dimers in Copper-Exchanged Zeolites.
J Am Chem Soc. 2019 Jul 24;141(29):11641-11650. doi: 10.1021/jacs.9b04906. Epub 2019 Jul 15.
6
Spectroscopic definition of the copper active sites in mordenite: selective methane oxidation.
J Am Chem Soc. 2015 May 20;137(19):6383-92. doi: 10.1021/jacs.5b02817. Epub 2015 May 7.
7
Transition-metal ions in zeolites: coordination and activation of oxygen.
Inorg Chem. 2010 Apr 19;49(8):3573-83. doi: 10.1021/ic901814f.
8
A [Cu2O]2+ core in Cu-ZSM-5, the active site in the oxidation of methane to methanol.
Proc Natl Acad Sci U S A. 2009 Nov 10;106(45):18908-13. doi: 10.1073/pnas.0910461106. Epub 2009 Oct 28.
9
Activity of Cu-Al-Oxo Extra-Framework Clusters for Selective Methane Oxidation on Cu-Exchanged Zeolites.
JACS Au. 2021 Jul 14;1(9):1412-1421. doi: 10.1021/jacsau.1c00196. eCollection 2021 Sep 27.

引用本文的文献

2
Standardization transformation of C-lignin to catechol and propylene.
Nat Commun. 2025 Jul 7;16(1):6245. doi: 10.1038/s41467-025-61457-y.
3
Stoichiometric Selective Carbonylation of Methane to Acetic Acid by Chemical Looping.
ACS Catal. 2025 Feb 5;15(4):3116-3125. doi: 10.1021/acscatal.4c07095. eCollection 2025 Feb 21.
4
Efficient conversion of propane in a microchannel reactor at ambient conditions.
Nat Commun. 2024 Jan 29;15(1):884. doi: 10.1038/s41467-024-45179-1.
5
Light-driven flow synthesis of acetic acid from methane with chemical looping.
Nat Commun. 2023 May 26;14(1):3047. doi: 10.1038/s41467-023-38731-y.
6
Methane Oxidation to Methanol.
Chem Rev. 2023 May 10;123(9):6359-6411. doi: 10.1021/acs.chemrev.2c00439. Epub 2022 Dec 2.
7
Understanding the CH Conversion over Metal Dimers from First Principles.
Nanomaterials (Basel). 2022 Apr 29;12(9):1518. doi: 10.3390/nano12091518.
8
A Brief Review on Solvent-Free Synthesis of Zeolites.
Materials (Basel). 2021 Feb 7;14(4):788. doi: 10.3390/ma14040788.
9
Mild oxidation of methane to methanol or acetic acid on supported isolated rhodium catalysts.
Nature. 2017 Nov 29;551(7682):605-608. doi: 10.1038/nature24640.
10
A DFT Study of CO Hydrogenation on Faujasite-Supported Ir Clusters: on the Role of Water for Selectivity Control.
ChemCatChem. 2016 Aug 8;8(15):2500-2507. doi: 10.1002/cctc.201600644. Epub 2016 Jun 23.

本文引用的文献

1
[Cu2O]2+ active site formation in Cu-ZSM-5: geometric and electronic structure requirements for N2O activation.
J Am Chem Soc. 2014 Mar 5;136(9):3522-9. doi: 10.1021/ja4113808. Epub 2014 Feb 21.
2
Spectroscopy and redox chemistry of copper in mordenite.
Chemphyschem. 2014 Jan 13;15(1):91-9. doi: 10.1002/cphc.201300730.
3
Cu-ZSM-5: A biomimetic inorganic model for methane oxidation.
J Catal. 2011 Dec 1;284(2):157-164. doi: 10.1016/j.jcat.2011.10.009. Epub 2011 Nov 14.
4
Oxidative methane upgrading.
ChemSusChem. 2012 Sep;5(9):1668-86. doi: 10.1002/cssc.201200299. Epub 2012 Jul 29.
5
Direct catalytic conversion of methane to methanol in an aqueous medium by using copper-promoted Fe-ZSM-5.
Angew Chem Int Ed Engl. 2012 May 21;51(21):5129-33. doi: 10.1002/anie.201108706. Epub 2012 Apr 5.
6
Catalytic conversion of methane to methanol over Cu-mordenite.
Chem Commun (Camb). 2012 Jan 11;48(3):404-6. doi: 10.1039/c1cc15840f. Epub 2011 Nov 11.
7
Mechanistic differences between methanol and dimethyl ether carbonylation in side pockets and large channels of mordenite.
Phys Chem Chem Phys. 2011 Feb 21;13(7):2603-12. doi: 10.1039/c0cp01996h. Epub 2011 Jan 19.
8
Oxygen precursor to the reactive intermediate in methanol synthesis by Cu-ZSM-5.
J Am Chem Soc. 2010 Oct 27;132(42):14736-8. doi: 10.1021/ja106283u.
9
Oxidation of methane by a biological dicopper centre.
Nature. 2010 May 6;465(7294):115-9. doi: 10.1038/nature08992. Epub 2010 Apr 21.
10
A [Cu2O]2+ core in Cu-ZSM-5, the active site in the oxidation of methane to methanol.
Proc Natl Acad Sci U S A. 2009 Nov 10;106(45):18908-13. doi: 10.1073/pnas.0910461106. Epub 2009 Oct 28.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验