Eichner Hannes, Wu Cindy, Cammer Michael, Tran Elizabeth N H, Hirst Timothy R, Paton James C, Weiser Jeffrey N
Department of Microbiology, New York University Grossman School of Medicine, New York, New York, USA.
Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden.
Microbiol Spectr. 2025 Apr;13(4):e0308724. doi: 10.1128/spectrum.03087-24. Epub 2025 Feb 14.
() is a leading respiratory pathogen that depends on a thick layer of capsular polysaccharide (CPS) to evade immune clearance. Disease prevention by CPS-based vaccines is limited because of the species' high genome plasticity and ability to express over 100 different capsule types (serotypes). Generally, intra-serotype variations in capsulation are overlooked, despite the genetic variability of the bacterium. This oversight may result from a lack of standardized, reliable, and easily available methodology to quantify capsulation. Here, we have modified two methods to analyze the capsule: immunoblot quantification of CPS in bacterial lysates and light microscopy to assess capsule thickness. Two assays were used because each measures distinct aspects of capsulation that could be differentially affected by the density of CPS. Quantification of either CPS amount or capsule thickness predicted the effectiveness of immune serum in opsonophagocytic killing assays for isogenic strains. Our standardized approaches both revealed significant differences in both CPS amount and capsule thickness among clinical isolates of the same serotype, challenging the assumption that intra-serotype capsulation is a conserved feature. As expected, these two methods show limited intra-strain correlation between amounts of CPS production and capsule thickness.
Despite the availability of vaccines, remains a leading cause of respiratory and invasive diseases. These vaccines target a polysaccharide capsule the bacterium uses to evade the immune system. Variation of the capsule composition subdivides the organism into serotypes and influences its protective potency. Another critical factor affecting this protection is capsule size. It is commonly assumed that strains of the same serotype produce capsules of consistent size, despite the organism's heterogeneity. In this study, we challenge this assumption by analyzing clinical isolates of the same serotype. Existing methods were modified to achieve high reproducibility and increase accessibility. Our data reveal significant fluctuations in capsule production within a given serotype. Our findings suggest that research should consider capsule size, not just its presence and type. The results imply that standardized vaccine efficacy tests may yield variable results depending on the capsule production of target strains.
()是一种主要的呼吸道病原体,它依靠一层厚厚的荚膜多糖(CPS)来逃避免疫清除。基于CPS的疫苗预防疾病的效果有限,因为该物种具有很高的基因组可塑性,并且能够表达100多种不同的荚膜类型(血清型)。一般来说,尽管该细菌存在遗传变异性,但荚膜形成中的血清型内变异却被忽视了。这种忽视可能是由于缺乏标准化、可靠且易于获得的方法来量化荚膜形成。在此,我们改进了两种方法来分析荚膜:对细菌裂解物中的CPS进行免疫印迹定量以及用光学显微镜评估荚膜厚度。使用这两种检测方法是因为它们各自测量荚膜形成的不同方面,而这些方面可能会受到CPS密度的不同影响。CPS量或荚膜厚度的定量可预测同基因菌株在调理吞噬杀伤试验中免疫血清的有效性。我们的标准化方法均显示同一血清型的临床分离株在CPS量和荚膜厚度上存在显著差异,这对血清型内荚膜形成是一个保守特征这一假设提出了挑战。正如预期的那样,这两种方法显示CPS产生量与荚膜厚度之间的菌株内相关性有限。
尽管有疫苗可用,但()仍然是呼吸道疾病和侵袭性疾病的主要病因。这些疫苗针对的是该细菌用来逃避免疫系统的多糖荚膜。荚膜成分的变异将该生物体细分为不同血清型,并影响其保护效力。影响这种保护作用的另一个关键因素是荚膜大小。通常认为同一血清型的()菌株产生大小一致的荚膜,尽管该生物体具有异质性。在本研究中,我们通过分析同一血清型的临床分离株对这一假设提出了挑战。对现有方法进行了改进以实现高重现性并提高可及性。我们的数据揭示了给定血清型内荚膜产生的显著波动。我们的研究结果表明,()的研究应考虑荚膜大小,而不仅仅是其存在与否和类型。结果表明,标准化的疫苗效力测试可能会因目标菌株的荚膜产生情况而产生不同结果。