Chi Hanbin, Hu Yueqiang, Ou Xiangnian, Jiang Yuting, Yu Dian, Lou Shaozhen, Wang Quan, Xie Qiong, Qiu Cheng-Wei, Duan Huigao
National Research Center for High-Efficiency Grinding, College of Mechanical and Vehicle, Engineering, Hunan University, Changsha, 410082, P. R. China.
Greater Bay Area Institute for Innovation, Hunan University, Guangzhou, Guangdong, 511300, P. R. China.
Adv Mater. 2025 Apr;37(13):e2419621. doi: 10.1002/adma.202419621. Epub 2025 Feb 14.
Meta-optics, with unique light-matter interactions and extensive design space, underpins versatile and compact optical devices through flexible multi-parameter light field control. However, conventional designs struggle with the intricate interdependencies of nano-structural complex responses across wavelengths and polarizations at a system level, hindering high-performance full-light field control. Here, a neural network-assisted end-to-end design framework that facilitates global, gradient-based optimization of multifunctional meta-optics layouts for full light field control is proposed. Its superiority over separated design is showcased by utilizing the limited design space for multi-wavelength-polarization holography with enhanced performance (e.g., ≈6 × structural similarity index experimentally). By harnessing the dispersive full-parameter Jones matrix, orthogonal tri-polarization multi-wavelength-depth holography is further demonstrated, breaking conventional channel limitations. To highlight its versatility, non-orthogonal polarizations (>3) are showcased for arbitrary polarized-spectral multi-information processing applications in display, imaging, and computing. The comprehensive framework elevates light field control in meta-optics, delivering superior performance, enhanced functionality, and improved reliability, thereby paving the way for next-generation intelligent optical technologies.
超颖光学具有独特的光与物质相互作用以及广阔的设计空间,通过灵活的多参数光场控制,为多功能紧凑型光学器件提供了支撑。然而,传统设计在系统层面难以应对纳米结构复杂响应在波长和偏振方面的复杂相互依存关系,从而阻碍了高性能全光场控制。在此,提出了一种神经网络辅助的端到端设计框架,该框架有助于对用于全光场控制的多功能超颖光学布局进行基于梯度的全局优化。通过利用有限的设计空间实现具有更高性能(例如,实验上结构相似性指数提高约6倍)的多波长偏振全息术,展示了其相对于分离设计的优越性。通过利用色散全参数琼斯矩阵,进一步演示了正交三偏振多波长深度全息术,突破了传统通道限制。为突出其通用性,展示了非正交偏振(>3)在显示、成像和计算中的任意偏振光谱多信息处理应用。该综合框架提升了超颖光学中的光场控制,提供了卓越的性能、增强的功能和更高的可靠性,从而为下一代智能光学技术铺平了道路。