Park Cherry, Jeon Youngsun, Rho Junsuk
Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea.
Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea.
Adv Sci (Weinh). 2025 Jul;12(28):e2504634. doi: 10.1002/advs.202504634. Epub 2025 May 8.
Metasurface holography has emerged as a versatile tool for manipulating light at subwavelength scales, offering enhanced capabilities in multiplexing high-resolution holographic images. However, the scalability of channel multiplexing remains a significant challenge. In this paper, a high-capacity single-cell metasurface is presented capable of maximizing channels by multiplexing holographic images across both spin and wavelength using a single-phase map. The achievement of simultaneous multiplexing of left- and right-circular polarization states is detailed across a broad spectral range, from visible to near-infrared wavelengths, by using a single-cell metasurface, optimized through an inverse design to minimize loss between the target and output images by automatic differentiation. The phase profile is optimized to encode multiple holographic images without requiring complex meta-atoms, thereby reducing the fabrication complexity while maintaining high performance. Using this method, two metasurface implementations are demonstrated, an 8-channel hologram covering both the visible and near-infrared regions and a 36-channel hologram operating in the full-visible spectrum across 18 wavelengths separated by 20-nm intervals. Furthermore, noise-related loss functions are incorporated into the optimization process to suppress background noise and minimize inter-channel crosstalk, resulting in significantly improved image quality and fidelity. This approach offers a reliable solution for further photonic applications such as displays, optical data storage, and information encryption.
超表面全息术已成为一种在亚波长尺度上操纵光的通用工具,在复用高分辨率全息图像方面具有增强的能力。然而,通道复用的可扩展性仍然是一个重大挑战。在本文中,提出了一种高容量单细胞超表面,它能够通过使用单相图在自旋和波长上复用全息图像来最大化通道。通过使用单细胞超表面,在从可见光到近红外波长的宽光谱范围内详细实现了左旋和右旋圆偏振态的同时复用,该超表面通过逆向设计进行了优化,以通过自动微分最小化目标图像和输出图像之间的损耗。相位分布经过优化,可在无需复杂超原子的情况下编码多个全息图像,从而在保持高性能的同时降低了制造复杂性。使用这种方法,展示了两种超表面实现方式,一种是覆盖可见光和近红外区域的8通道全息图,另一种是在全可见光谱范围内跨越18个波长、间隔为20纳米的36通道全息图。此外,与噪声相关的损耗函数被纳入优化过程,以抑制背景噪声并最小化通道间串扰,从而显著提高图像质量和保真度。这种方法为显示器、光学数据存储和信息加密等进一步的光子应用提供了可靠的解决方案。