Suppr超能文献

基于主体的建模:一种评估个人对环境污染物暴露的随机方法——来自URBANOME项目的见解。

Agent-based modelling: A stochastic approach to assessing personal exposure to environmental pollutants - Insights from the URBANOME project.

作者信息

Karakoltzidis Achilleas, Agalliadou Anna, Kermenidou Marianthi, Nikiforou Fotini, Chatzimpaloglou Anthoula, Feleki Eleni, Karakitsios Spyros, Gotti Alberto, Sarigiannis Dimosthenis Α

机构信息

Aristotle University of Thessaloniki, Department of Chemical Engineering, Environmental Engineering Laboratory, University Campus, Thessaloniki 54124, Greece; HERACLES Research Center on the Exposome and Health, Center for Interdisciplinary Research and Innovation, Balkan Center, Bldg. B, 10th km Thessaloniki - Thermi Road, 57001, Greece.

Aristotle University of Thessaloniki, Department of Chemical Engineering, Environmental Engineering Laboratory, University Campus, Thessaloniki 54124, Greece; HERACLES Research Center on the Exposome and Health, Center for Interdisciplinary Research and Innovation, Balkan Center, Bldg. B, 10th km Thessaloniki - Thermi Road, 57001, Greece; EnvE.X, K. Palama 11, Thessaloniki, Greece; National Hellenic Research Foundation, Athens, Greece.

出版信息

Sci Total Environ. 2025 Mar 1;967:178804. doi: 10.1016/j.scitotenv.2025.178804. Epub 2025 Feb 13.

Abstract

In the context of the URBANOME project, aiming to assess European citizens' exposure to air pollutants (PM10, PM2.5, NO2) and noise, an extensive data collection process was undertaken. This involved the distribution of stationary home sensors, portable sensors, and smartphone applications, alongside participants logging their activities while using these devices. By leveraging socioeconomic and socio-demographic statistical data for the residents of Thessaloniki, we developed an agent-based model to estimate exposure levels based on the movement patterns, locations, and data collected from the URBANOME campaign. The model highlights that an individual's exposure is closely linked to the type of activities they perform, their location, age, and gender. Whether exposure occurs indoors, or outdoors is important for determining intake levels. Activity selections were found to be strongly influenced by income, age, and social connections, indicating that socio-economic factors significantly shape exposure patterns. The analysis also revealed considerable differences between PM measurements taken from fixed monitoring stations and the sensors used in the campaign. Notably, even agents residing in the same household displayed distinct exposure levels, underscoring the variability within localized environments. Preliminary results from the URBANOME campaign were compared with the ABM outputs, showing differences in median values of up to 20 % of both noise and inhalation intakes. This research emphasizes the importance of using such models for developing future scenarios in large cities aimed at fostering green transitions and enhancing citizens' quality of life. These models provide valuable insights for designing strategies to reduce exposure and improve urban living conditions.

摘要

在“城市环境监测与建模”(URBANOME)项目背景下,旨在评估欧洲公民接触空气污染物(PM10、PM2.5、NO2)和噪音的情况,开展了广泛的数据收集过程。这包括分发固定家庭传感器、便携式传感器和智能手机应用程序,同时参与者在使用这些设备时记录他们的活动。通过利用塞萨洛尼基居民的社会经济和社会人口统计数据,我们开发了一个基于主体的模型,以根据“城市环境监测与建模”活动收集的移动模式、位置和数据来估计接触水平。该模型强调,个人接触情况与他们所进行的活动类型、位置、年龄和性别密切相关。接触发生在室内还是室外对于确定摄入量很重要。研究发现活动选择受到收入、年龄和社会关系的强烈影响,这表明社会经济因素显著塑造了接触模式。分析还揭示了固定监测站的PM测量值与活动中使用的传感器之间存在相当大的差异。值得注意的是,即使居住在同一家庭的主体也表现出不同的接触水平,这突出了局部环境内的变异性。“城市环境监测与建模”活动的初步结果与基于主体的模型输出进行了比较,结果显示噪音和吸入摄入量的中位数差异高达20%。这项研究强调了使用此类模型来制定大城市未来情景的重要性,这些情景旨在促进绿色转型并提高公民生活质量。这些模型为设计减少接触和改善城市生活条件的策略提供了有价值的见解。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验