Vanneau Theo, Quiquempoix Michael, Foxe John J, Molholm Sophie
The Cognitive Neurophysiology Laboratory, Department of Pediatrics, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
Institut de Recherche Biomédicale des Armées (IRBA), 91223 Brétigny sur Orge, France; URP 7330 VIFASOM, Université Paris Cité, Hôtel Dieu, Paris, France.
Neuroimage. 2025 Apr 1;309:121089. doi: 10.1016/j.neuroimage.2025.121089. Epub 2025 Feb 13.
Intersensory switching (IS), the ability to shift attention between different sensory systems, is essential for cognitive flexibility, yet leads to slower responses compared to repeating the same sensory modality. The underlying neural mechanisms of IS remain largely unknown. In this study, high-density EEG was used to investigate these mechanisms in healthy adults (n = 53; mean age 26±7.39; 30 female) performing a speeded reaction time (RT) task involving visual and auditory stimuli. Trials were categorized as Repeat (same preceding modality) or Switch (different preceding modality). Switch trials showed slower RTs and delayed sensory responses (N1 and P2 components). Furthermore, across both Repeat and Switch trials, RT correlated with the latency of these neural responses. Additionally, lower alpha-band inter-trial phase coherence (ITPC) in primary sensory regions was noted for Switch compared to Repeat trials, suggesting reduced efficiency of sensory processing. Greater induced theta activity over fronto-central scalp regions in Switch trials suggested increased cognitive control demands. These findings support a model where the prior stimulus primes the sensory cortex for faster processing of Repeat trials, while Switch trials lead to heightened cognitive resources for adjustment, likely reflecting attentional reallocation mediated by the anterior cingulate cortex (ACC). The consistent effects across auditory and visual modalities indicate that IS relies on a core, modality-independent mechanism grounded in fundamental principles of sensory and attentional reorganization.
跨感觉通道转换(IS),即在不同感觉系统之间转移注意力的能力,对认知灵活性至关重要,但与重复相同的感觉通道相比,会导致反应变慢。IS潜在的神经机制在很大程度上仍不清楚。在本研究中,使用高密度脑电图来研究健康成年人(n = 53;平均年龄26±7.39岁;30名女性)在执行一项涉及视觉和听觉刺激的快速反应时间(RT)任务时的这些机制。试验被分为重复(相同的前一个感觉通道)或转换(不同的前一个感觉通道)。转换试验显示反应时间变慢且感觉反应延迟(N1和P2成分)。此外,在重复和转换试验中,反应时间都与这些神经反应的潜伏期相关。另外,与重复试验相比,转换试验在初级感觉区域的α波段试验间相位相干性(ITPC)较低,这表明感觉处理效率降低。转换试验中额中央头皮区域更大的诱发θ活动表明认知控制需求增加。这些发现支持了一种模型,即先前的刺激使感觉皮层为重复试验的更快处理做好准备,而转换试验则导致用于调整的认知资源增加,这可能反映了由前扣带回皮层(ACC)介导的注意力重新分配。听觉和视觉通道的一致效应表明,IS依赖于一种基于感觉和注意力重组基本原理的核心、与通道无关的机制。