Suppr超能文献

Meta分析中的异质性:一个值得探索的不可避免的挑战。

Heterogeneity in meta-analyses: an unavoidable challenge worth exploring.

作者信息

Choi Geun Joo, Kang Hyun

机构信息

Department of Anesthesiology and Pain Medicine, Chung-Ang University College of Medicine, Seoul, Korea.

出版信息

Korean J Anesthesiol. 2025 Aug;78(4):301-314. doi: 10.4097/kja.25001. Epub 2025 Feb 14.

Abstract

Heterogeneity is a critical but unavoidable aspect of meta-analyses that reflects differences in study outcomes beyond what is expected by chance. These variations arise from differences in the study populations, interventions, methodologies, and measurement tools and can influence key meta-analytical outputs, including pooled effect sizes, confidence intervals, and overall conclusions. Systematic reviews and meta-analyses combine evidence from diverse studies; thus, a clear understanding of heterogeneity is necessary for reliable and meaningful interpretations of the results. This review examines the concepts, sources, measurement techniques, and implications of this heterogeneity. Statistical tools (e.g., Cochran's Q, I2, and τ2) quantify heterogeneity, whereas τ and prediction intervals, as they use the same units, aid in the intuitive understanding of heterogeneity. The choice between fixed- and random-effects models can also significantly affect the handling and interpretation of heterogeneity in meta-analyses. Effective management strategies include subgroup analyses, sensitivity analyses, and meta-regressions, which identify sources of variability and strengthen the robustness of the findings. Although heterogeneity complicates the synthesis of a single effect size, it offers valuable insights into patterns and differences among studies. Recognizing and understanding heterogeneity is vital for accurately synthesizing the evidence, which can indicate whether an intervention has consistent effects, benefits, or harms. Rather than viewing heterogeneity as inherently good or bad, researchers and clinicians should consider it a key component of systematic reviews and meta-analyses, allowing for a deeper understanding and more nuanced application of pooled findings. Addressing heterogeneity ultimately enhances the reliability, applicability, and overall impact of the conclusions of meta-analyses.

摘要

异质性是荟萃分析中一个关键但不可避免的方面,它反映了研究结果中超出偶然预期的差异。这些差异源于研究人群、干预措施、方法学和测量工具的不同,并可能影响关键的荟萃分析结果,包括合并效应量、置信区间和总体结论。系统评价和荟萃分析整合了来自不同研究的证据;因此,对于结果进行可靠且有意义的解释,清晰理解异质性是必要的。本综述探讨了这种异质性的概念、来源、测量技术及其影响。统计工具(如Cochran's Q、I²和τ²)对异质性进行量化,而τ和预测区间由于使用相同的单位,有助于直观理解异质性。固定效应模型和随机效应模型之间的选择也会显著影响荟萃分析中异质性的处理和解释。有效的管理策略包括亚组分析、敏感性分析和荟萃回归,这些方法可以识别变异来源并增强研究结果的稳健性。尽管异质性使单一效应量的综合变得复杂,但它为研究之间的模式和差异提供了有价值的见解。认识和理解异质性对于准确综合证据至关重要,这可以表明一种干预措施是否具有一致的效果、益处或危害。研究人员和临床医生不应将异质性视为本质上的好或坏,而应将其视为系统评价和荟萃分析的关键组成部分,从而能够更深入地理解和更细致地应用汇总结果。解决异质性最终会提高荟萃分析结论的可靠性、适用性和总体影响力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验