Suppr超能文献

使用FeO-水纳米流体和螺旋盘管提高实验室规模混合冷却塔的效率。

Enhancing efficiency of a laboratory-scale hybrid cooling tower using FeO-water nanofluid and spiral coils.

作者信息

Heravi Danial Fallah, Goshayeshi Hamid Reza, Saleh Reza

机构信息

Department of Mechanical Engineering, Mashhad Branch, Islamic Azad University, Mashhad, Iran.

出版信息

Heliyon. 2024 Dec 18;11(1):e41370. doi: 10.1016/j.heliyon.2024.e41370. eCollection 2025 Jan 15.

Abstract

This study presents an in-depth investigation into improving the efficiency of a laboratory scale hybrid cooling tower by utilizing Fe₃O₄-water nanofluid at varying mass fractions, ranging from 0.015 % to 0.15 %, along with different coaxial spiral coil configurations. The experimental setup includes three spiral coils with diameters of 15 cm, 25 cm, and 35 cm, and a pipe diameter of 14 mm. By analyzing the relationship between cooling tower efficiency and the Merkel number, this research establishes a quantitative correlation between these factors. The novelty of this study lies in its unique combination of Fe₃O₄-water nanofluid and the spiral coil geometries, a configuration that has not been explored in prior studies for enhancing heat transfer in hybrid cooling towers. Experimental results indicate a significant 50 % improvement in cooling tower efficiency when Fe₃O₄-water nanofluid is used compared to pure water, largely due to enhanced thermal conductivity. Furthermore, the secondary flow generated by the spiral coils contributed an additional 8 % improvement in heat transfer. This work not only introduces a novel cooling tower design but also demonstrates the potential of nanofluids to significantly boost cooling efficiency in various industrial applications. By optimizing heat transfer performance through advanced fluid and geometric configurations, this study provides a comprehensive framework for future innovations in energy-efficient cooling technologies. Looking ahead, the research offers promising avenues for further exploration, such as optimizing nanofluid compositions, testing different nanomaterials or hybrid fluids, and exploring alternative tower configurations. The scalability of the proposed system presents strong potential for real-world industrial applications, driving the development of sustainable, energy-efficient cooling solutions in various sectors.

摘要

本研究深入探讨了如何通过使用质量分数在0.015%至0.15%之间变化的Fe₃O₄-水纳米流体以及不同的同轴螺旋线圈配置,来提高实验室规模混合冷却塔的效率。实验装置包括三个直径分别为15厘米、25厘米和35厘米的螺旋线圈以及一个直径为14毫米的管道。通过分析冷却塔效率与默克尔数之间的关系,本研究建立了这些因素之间的定量相关性。本研究的新颖之处在于将Fe₃O₄-水纳米流体与螺旋线圈几何形状独特结合,这种配置在以往关于提高混合冷却塔传热的研究中尚未被探索。实验结果表明,与纯水相比,使用Fe₃O₄-水纳米流体时冷却塔效率显著提高了50%,这主要归功于热导率的增强。此外,螺旋线圈产生的二次流使传热额外提高了8%。这项工作不仅引入了一种新颖的冷却塔设计,还展示了纳米流体在各种工业应用中显著提高冷却效率的潜力。通过先进的流体和几何配置优化传热性能,本研究为节能冷却技术的未来创新提供了一个全面的框架。展望未来,该研究提供了有前景的进一步探索途径,例如优化纳米流体成分、测试不同的纳米材料或混合流体以及探索替代塔配置。所提出系统的可扩展性在实际工业应用中具有强大潜力,推动了各行业可持续、节能冷却解决方案的发展。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b988/11825310/2378acb23f11/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验