Suppr超能文献

使用人工智能和智能手机技术进行轻松的碱度分析,无需设备,适用于从淡水到海水的各种水体。

Effortless alkalinity analysis using AI and smartphone technology, no equipment needed, from freshwater to saltwater.

作者信息

Han Zachary Y, Zheng Zihan, Han Alan Y, Zhang Huichun

机构信息

Department of Civil and Environmental Engineering, Case Western Reserve University, Cleveland, OH 44106, USA.

Department of Computer Science, Cornell University, Ithaca, NY 14850, USA.

出版信息

Eco Environ Health. 2024 Nov 14;4(1):100125. doi: 10.1016/j.eehl.2024.10.002. eCollection 2025 Mar.

Abstract

Alkalinity is a crucial water quality parameter with significant environmental and engineered system applications. Various analysis methods exist, from traditional titrations to advanced spectrophotometric and electrochemical techniques, each with specific benefits and limitations. Developing simple, affordable techniques for alkalinity analysis is essential to facilitate extensive and reliable water quality monitoring, empowering citizen scientists, and overcoming financial barriers in traditional monitoring programs. In this work, we developed an equipment-free, user-friendly alkalinity analysis approach accessible to a broad demographic. Specifically, we employed low-cost commercial reagents to generate color changes in response to alkalinity levels in various freshwater and saltwater samples. These images were captured with a smartphone and processed using machine learning models to correlate color intensity with alkalinity levels. After examining the effects of container type, lighting condition, ML algorithms, and sample size, we obtained the best models with R values of 0.868 ± 0.024 and 0.978 ± 0.008, and root-mean-square-error values of 29.5 ± 2.6 and 14.1 ± 2.0 for freshwater and saltwater, respectively. Five inexperienced users utilized this method for alkalinity analysis and achieved comparable results in performance. Additionally, we developed a user-friendly website where users, without prior experience, can upload images to obtain alkalinity readings for their water samples. This AI-powered, equipment-free technology represents a significant milestone in water quality monitoring, deviating from the trend of developing increasingly advanced analytical techniques and serving as a foundation for developing similar methods across various water quality parameters and broader analytical applications.

摘要

碱度是一个关键的水质参数,在环境和工程系统中有着重要应用。分析方法多种多样,从传统滴定法到先进的分光光度法和电化学技术,每种方法都有其特定的优缺点。开发简单、经济的碱度分析技术对于促进广泛且可靠的水质监测、助力公民科学家以及克服传统监测项目中的资金障碍至关重要。在这项工作中,我们开发了一种无需设备、用户友好的碱度分析方法,广泛适用于不同人群。具体而言,我们使用低成本的商用试剂,使其根据各种淡水和咸水样品中的碱度水平产生颜色变化。这些图像通过智能手机拍摄,并使用机器学习模型进行处理,以将颜色强度与碱度水平相关联。在考察了容器类型、光照条件、机器学习算法和样本量的影响后,我们得到了最佳模型,淡水样本的R值为0.868±0.024,均方根误差值为29.5±2.6;咸水样本的R值为0.978±0.008,均方根误差值为14.1±2.0。五名没有经验的用户使用该方法进行碱度分析,在性能上取得了可比的结果。此外,我们还开发了一个用户友好的网站,用户无需事先经验,即可上传图像以获取其水样的碱度读数。这种由人工智能驱动、无需设备的技术代表了水质监测中的一个重要里程碑,与开发日益先进的分析技术的趋势不同,为跨各种水质参数和更广泛分析应用开发类似方法奠定了基础。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/267b/11830324/0b5a18e4d160/ga1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验