Guan Jian, Liu Jingjing, Mo Wenji, Xiong Bingjun, Sun Kangkang, Yan Feng, Li Zhipeng, Wang Yuchen, Choubey Bhaskar
School of Electronics and Communication Engineering, Sun Yat-Sen University, Shenzhen, China.
Analogue Circuits and Image Sensors, Siegen University, Siegen, Germany.
Commun Eng. 2025 Feb 17;4(1):23. doi: 10.1038/s44172-025-00358-w.
Enhancing the photoelectric conversion efficiency of on-chip solar cells is crucial for advancing solar energy harvesting in self-powered smart microsensors for Internet of Things applications. Here we show that adopting a center electrode (CE) layout instead of a ring electrode (RE) effectively reduces the shadowing effect of surface electrodes. Using a standard 0.18 μm CMOS process, we fabricated a 0.01 mm² segmented triple-well on-chip solar cell with CEs and highly doped interconnections. Measurements demonstrate a photoelectric conversion efficiency of 25.79% under solar simulator illumination, a 17.49% improvement over conventional designs. This on-chip solar cell is used for on-chip energy harvesting, achieving a maximum end-to-end conversion efficiency of 10.20%, referring to the overall efficiency from incident light power to load power output. The proposed energy harvesting system reliably provides a stable 1 V output to the load, even under varying illumination and load conditions.
提高片上太阳能电池的光电转换效率对于推进用于物联网应用的自供电智能微传感器中的太阳能收集至关重要。在此,我们表明采用中心电极(CE)布局而非环形电极(RE)可有效降低表面电极的阴影效应。利用标准的0.18μm互补金属氧化物半导体(CMOS)工艺,我们制造了一个面积为0.01mm²的带有中心电极和高掺杂互连的分段三阱片上太阳能电池。测量结果表明,在太阳能模拟器光照下,其光电转换效率为25.79%,比传统设计提高了17.49%。这种片上太阳能电池用于片上能量收集,以入射光功率到负载功率输出的整体效率计算,实现了10.20%的最大端到端转换效率。所提出的能量收集系统即使在光照和负载条件变化的情况下,也能可靠地向负载提供稳定的1V输出。