Licata Joseph P, Gerstenhaber Jonathan A, Lelkes Peter I
Department of Bioengineering, College of Engineering, Temple University, Philadelphia, PA, United States.
Front Bioeng Biotechnol. 2025 Feb 3;13:1531731. doi: 10.3389/fbioe.2025.1531731. eCollection 2025.
The successful implantation of laboratory-grown cardiac tissue requires phenotypically mature cardiomyocytes capable of electrophysiological integration with native heart tissue. Pulsed electrical stimulation (ES) has been identified as a promising strategy for enhancing cardiomyocyte maturation. However, there are discrepancies in the literature as to best practices for promoting cardiac differentiation using ES.
This study presents a novel, 3D printed bioreactor that delivers ES to human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs), promoting cell maturity and functional readiness for implantation. Finite element analysis and mathematical modeling were used to model the fluid dynamics and to characterize in detail the delivery of pulsatile electrical signals, providing precise control over stimulation parameters such as voltage, current, and charge.
The bioreactor developed here provides an easy-to-use, inexpensive platform for culturing hiPSC-CMs under the influence of ES and low-shear fluid flow for enhanced nutrient availability, while its "drop-in" design facilitates real-time observation of cultured cells. The electrical stimulation provided is controlled, modeled, and predictable, enabling reproducible experimental conditions and promoting comparability across future studies. Human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) grown in the bioreactor with ES showed improved differentiation and an enhanced ability to respond to external electrical pacing signals.
By offering a standardized platform for ES-based cardiomyocyte maturation, this bioreactor aims to accelerate advancements in cardiac tissue engineering. Future research will explore how variations in ES parameters influence cardiomyocyte phenotype and maturation, contributing to a deeper understanding of cardiac cell development and optimization for therapeutic applications.
实验室培养的心脏组织成功植入需要表型成熟的心肌细胞,能够与天然心脏组织进行电生理整合。脉冲电刺激(ES)已被确定为增强心肌细胞成熟的一种有前景的策略。然而,关于使用ES促进心脏分化的最佳实践,文献中存在差异。
本研究提出了一种新型的3D打印生物反应器,它将ES传递给人诱导多能干细胞衍生的心肌细胞(hiPSC-CMs),促进细胞成熟并使其在功能上为植入做好准备。使用有限元分析和数学建模对流体动力学进行建模,并详细表征脉动电信号的传递,从而对刺激参数(如电压、电流和电荷)进行精确控制。
这里开发的生物反应器提供了一个易于使用、成本低廉的平台,用于在ES和低剪切流体流动的影响下培养hiPSC-CMs,以提高营养物质的可用性,而其“即插即用”设计便于实时观察培养的细胞。所提供的电刺激是可控的、可建模的且可预测的,能够实现可重复的实验条件,并促进未来研究之间的可比性。在带有ES的生物反应器中生长的人诱导多能干细胞衍生的心肌细胞(hiPSC-CMs)显示出分化改善以及对外部电起搏信号反应能力增强。
通过为基于ES的心肌细胞成熟提供一个标准化平台,该生物反应器旨在加速心脏组织工程的进展。未来的研究将探索ES参数的变化如何影响心肌细胞表型和成熟,有助于更深入地了解心脏细胞发育并优化治疗应用。