Suppr超能文献

使用基于深度学习的去噪解决方案HawkAI加速兽医低场MRI采集。

Accelerating veterinary low field MRI acquisitions using the deep learning based denoising solution HawkAI.

作者信息

Nour Eddin Jamil, Blanchard Martin, Guevar Julien, Curcio Valentina, Dorez Hugo

机构信息

AI/Computer Vision Department, Hawkcell, 69280, Marcy-L'Étoile, France.

Neurology Department, AniCura Tierklinik, 3600, Thun, Switzerland.

出版信息

Sci Rep. 2025 Feb 18;15(1):5846. doi: 10.1038/s41598-025-88822-7.

Abstract

Magnetic resonance imaging (MRI) has changed veterinary diagnosis but its long-sequence time can be problematic, especially because animals need to be sedated during the exam. Unfortunately, shorter scan times implies a fall in overall image quality and diagnosis reliability. Therefore, we developed a Generative Adversarial Net-based denoising algorithm called HawkAI. In this study, a Standard-Of-Care (SOC) MRI-sequence and then a faster sequence were acquired and HawkAI was applied to the latter. Radiologists were then asked to qualitatively evaluate the two proposed images based on different factors using a Likert scale (from 1 being strong preference for HawkAI to 5 being strong preference for SOC). The aim was to prove that they had at least no preference between the two sequences in terms of Signal-to-Noise Ratio (SNR) and diagnosis. They slightly preferred HawkAI in terms of SNR (confidence interval (CI) being [1.924-2.176]), had no preference in terms of Artifacts Presence, Diagnosis Pertinence and Lesion Conspicuity (respective CIs of [2.933-3.113], [2.808-3.132] and [2.941-3.119]), and a very slight preference for SOC in terms of Spatial Resolution and Image Contrast (respective CIs of [3.153-3.453] and [3.072-3.348]). This shows the possibility to acquire images twice as fast without any major drawback compared to a longer acquisition.

摘要

磁共振成像(MRI)改变了兽医诊断方式,但其长序列时间可能会带来问题,尤其是因为在检查过程中动物需要使用镇静剂。不幸的是,扫描时间缩短意味着整体图像质量和诊断可靠性下降。因此,我们开发了一种基于生成对抗网络的去噪算法,名为HawkAI。在本研究中,先获取了一个标准护理(SOC)MRI序列,然后获取了一个更快的序列,并将HawkAI应用于后者。随后,要求放射科医生使用李克特量表(从1表示强烈偏好HawkAI到5表示强烈偏好SOC),根据不同因素对这两幅图像进行定性评估。目的是证明他们在信噪比(SNR)和诊断方面对这两个序列至少没有偏好。在SNR方面,他们略微偏好HawkAI(置信区间(CI)为[1.924 - 2.176]),在伪影存在、诊断相关性和病变清晰度方面没有偏好(各自的CI为[2.933 - 3.113]、[2.808 - 3.132]和[2.941 - 3.119]),而在空间分辨率和图像对比度方面对SOC有非常轻微的偏好(各自的CI为[3.153 - 3.453]和[3.072 - 3.348])。这表明与更长的采集时间相比,有可能在不产生任何重大缺点的情况下将图像采集速度提高一倍。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e483/11836044/c270a0586e69/41598_2025_88822_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验