Suppr超能文献

深度学习去噪重建能够在获得令人满意的图像质量的同时,更快地采集T2加权液体衰减反转恢复序列。

Deep learning denoising reconstruction enables faster T2-weighted FLAIR sequence acquisition with satisfactory image quality.

作者信息

Brain Matthew E, Amukotuwa Shalini, Bammer Roland

机构信息

Department of Diagnostic Imaging, Monash Health, Monash Medical Centre, Melbourne, Victoria, Australia.

出版信息

J Med Imaging Radiat Oncol. 2024 Jun;68(4):377-384. doi: 10.1111/1754-9485.13649. Epub 2024 Apr 5.

Abstract

INTRODUCTION

Deep learning reconstruction (DLR) technologies are the latest methods attempting to solve the enduring problem of reducing MRI acquisition times without compromising image quality. The clinical utility of this reconstruction technique is yet to be fully established. This study aims to assess whether a commercially available DLR technique applied to 2D T2-weighted FLAIR brain images allows a reduction in scan time, without compromising image quality and thus diagnostic accuracy.

METHODS

47 participants (24 male, mean age 55.9 ± 18.7 SD years, range 20-89 years) underwent routine, clinically indicated brain MRI studies in March 2022, that included a standard-of-care (SOC) T2-weighted FLAIR sequence, and an accelerated acquisition that was reconstructed using the DLR denoising product. Overall image quality, lesion conspicuity, signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR), and artefacts for each sequence, and preferred sequence on direct comparison, were subjectively assessed by two readers.

RESULTS

There was a strong preference for SOC FLAIR sequence for overall image quality (P = 0.01) and head-to-head comparison (P < 0.001). No difference was observed for lesion conspicuity (P = 0.49), perceived SNR (P = 1.0), and perceived CNR (P = 0.84). There was no difference in motion (P = 0.57) nor Gibbs ringing (P = 0.86) artefacts. Phase ghosting (P = 0.038) and pseudolesions were significantly more frequent (P < 0.001) on DLR images.

CONCLUSION

DLR algorithm allowed faster FLAIR acquisition times with comparable image quality and lesion conspicuity. However, an increased incidence and severity of phase ghosting artefact and presence of pseudolesions using this technique may result in a reduction in reading speed, efficiency, and diagnostic confidence.

摘要

引言

深度学习重建(DLR)技术是旨在解决在不影响图像质量的情况下缩短MRI采集时间这一长期问题的最新方法。这种重建技术的临床实用性尚未完全确立。本研究旨在评估一种应用于二维T2加权液体衰减反转恢复(FLAIR)脑图像的商用DLR技术是否能够在不影响图像质量及诊断准确性的前提下缩短扫描时间。

方法

47名参与者(24名男性,平均年龄55.9±18.7标准差岁,年龄范围20 - 89岁)于2022年3月接受了常规的、临床指征的脑部MRI检查,其中包括一个标准护理(SOC)T2加权FLAIR序列,以及一个使用DLR去噪产品重建的加速采集序列。由两名阅片者对每个序列的整体图像质量、病变清晰度、信噪比(SNR)、对比噪声比(CNR)和伪影,以及直接比较时的首选序列进行主观评估。

结果

对于整体图像质量(P = 0.01)和直接对比(P < 0.001),阅片者强烈倾向于SOC FLAIR序列。在病变清晰度(P = 0.49)、感知SNR(P = 1.0)和感知CNR(P = 0.84)方面未观察到差异。在运动伪影(P = 0.57)和吉布斯振铃伪影(P = 0.86)方面也没有差异。在DLR图像上,相位鬼影伪影(P = 0.038)和假病变明显更常见(P < 0.001)。

结论

DLR算法可实现更快的FLAIR采集时间,同时具有可比的图像质量和病变清晰度。然而,使用该技术时相位鬼影伪影的发生率和严重程度增加以及假病变的出现可能会导致阅片速度、效率和诊断信心下降。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验