Suppr超能文献

人工智能在心脏肿瘤学中的应用:综述

Artificial Intelligence Applications in Cardio-Oncology: A Comprehensive Review.

作者信息

Guha Avirup, Shah Viraj, Nahle Tarek, Singh Shivam, Kunhiraman Harikrishnan Hyma, Shehnaz Fathima, Nain Priyanshu, Makram Omar M, Mahmoudi Morteza, Al-Kindi Sadeer, Madabhushi Anant, Shiradkar Rakesh, Daoud Hisham

机构信息

Division of Cardiology, Department of Medicine, Medical College of Georgia at Augusta University, Augusta, GA, USA.

Cardio-Oncology Program, Medical College of Georgia at Augusta University, Augusta, GA, USA.

出版信息

Curr Cardiol Rep. 2025 Feb 19;27(1):56. doi: 10.1007/s11886-025-02215-w.

Abstract

PURPOSE OF REVIEW

This review explores the role of artificial intelligence (AI) in cardio-oncology, focusing on its latest application across problems in diagnosis, prognosis, risk stratification, and management of cardiovascular (CV) complications in cancer patients. It also highlights multi-omics analysis, explainable AI, and real-time decision-making, while addressing challenges like data heterogeneity and ethical concerns.

RECENT FINDINGS

AI can advance cardio-oncology by leveraging imaging, electronic health records (EHRs), electrocardiograms (ECG), and multi-omics data for early cardiotoxicity detection, stratification and long-term risk prediction. Novel AI-ECG models and imaging techniques improve diagnostic accuracy, while multi-omics analysis identifies biomarkers for personalized treatment. However, significant barriers, including data heterogeneity, lack of transparency, and regulatory challenges, hinder widespread adoption. AI significantly enhances early detection and intervention in cardio-oncology. Future efforts should address the impact of AI technologies on clinical outcomes, and ethical challenges, to enable broader clinical adoption and improve patient care.

摘要

综述目的

本综述探讨人工智能(AI)在心脏肿瘤学中的作用,重点关注其在癌症患者心血管(CV)并发症的诊断、预后、风险分层及管理等问题上的最新应用。还强调了多组学分析、可解释人工智能和实时决策,同时探讨了数据异质性和伦理问题等挑战。

最新发现

人工智能可以通过利用成像、电子健康记录(EHR)、心电图(ECG)和多组学数据来推进心脏肿瘤学,以进行早期心脏毒性检测、分层和长期风险预测。新型人工智能心电图模型和成像技术提高了诊断准确性,而多组学分析则可识别用于个性化治疗的生物标志物。然而,包括数据异质性、缺乏透明度和监管挑战在内的重大障碍阻碍了其广泛应用。人工智能显著增强了心脏肿瘤学中的早期检测和干预。未来的工作应解决人工智能技术对临床结果的影响以及伦理挑战,以实现更广泛的临床应用并改善患者护理。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验