文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

生物工程化蛋白质纳米载体促进小干扰RNA从溶酶体逃逸用于胶质母细胞瘤的靶向RNA干扰治疗

Bioengineered protein nanocarrier facilitating siRNA escape from lysosomes for targeted RNAi therapy in glioblastoma.

作者信息

Jin Yiliang, Zhang Baoli, Li Jianru, Guo Zhenxi, Zhang Chen, Chen Xuehui, Ma Long, Wang Zhuoran, Yang Haiyin, Li Yong, Weng Yuhua, Huang Yuanyu, Yan Xiyun, Fan Kelong

机构信息

CAS Engineering Laboratory for Nanozyme, Key Laboratory of Biomacromolecules (CAS), CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.

University of Chinese Academy of Sciences, Beijing 100049, China.

出版信息

Sci Adv. 2025 Feb 21;11(8):eadr9266. doi: 10.1126/sciadv.adr9266. Epub 2025 Feb 19.


DOI:10.1126/sciadv.adr9266
PMID:39970222
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11838010/
Abstract

RNA interference (RNAi) represents a promising gene-specific therapy against tumors. However, its clinical translation is impeded by poor performance of lysosomal escape and tumor targeting. This challenge is especially prominent in glioblastoma (GBM) therapy, necessitating the penetration of the blood-brain barrier (BBB). Leveraging the intrinsic tumor-targeting and BBB traversing capability of human H-ferritin, we designed a series of ferritin variants with positively charged cavity and truncated carboxyl terminus, termed tHFn(+). These nanocarriers respond to weak acid and disassemble in endosomal compartments, exposing the internal positive charges to facilitate the lysosomal escape of loaded small interfering RNA (siRNA). Functioning as universal siRNA nanocarriers, tHFn(+) significantly enhanced the uptake of different siRNAs and suppressed gene expressions associated with GBM progression. Furthermore, tHFn(+) traversed the BBB and targeted glioma in vivo by binding to its receptors (e.g., transferrin receptor 1). tHFn(+)-delivered siRNAs exhibited exceptional therapeutic effects against glioma in vivo, advancing RNAi therapeutics beyond GBM for the treatment of various diseases.

摘要

RNA干扰(RNAi)是一种很有前景的针对肿瘤的基因特异性疗法。然而,其临床转化受到溶酶体逃逸和肿瘤靶向性不佳的阻碍。这一挑战在胶质母细胞瘤(GBM)治疗中尤为突出,因为需要穿透血脑屏障(BBB)。利用人H-铁蛋白固有的肿瘤靶向和穿越血脑屏障的能力,我们设计了一系列具有带正电荷腔和截短羧基末端的铁蛋白变体,称为tHFn(+)。这些纳米载体对弱酸有反应,并在内体区室中解体,暴露出内部正电荷,以促进负载的小干扰RNA(siRNA)从溶酶体中逃逸。作为通用的siRNA纳米载体,tHFn(+)显著增强了不同siRNA的摄取,并抑制了与GBM进展相关的基因表达。此外,tHFn(+)通过与其受体(如转铁蛋白受体1)结合,在体内穿越血脑屏障并靶向胶质瘤。tHFn(+)递送的siRNAs在体内对胶质瘤表现出卓越的治疗效果,将RNAi疗法从GBM扩展到用于治疗各种疾病。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8629/11838010/b823dcd7be6d/sciadv.adr9266-f8.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8629/11838010/0f37c8bc0098/sciadv.adr9266-f1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8629/11838010/58fc53576e69/sciadv.adr9266-f2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8629/11838010/674a6f87176a/sciadv.adr9266-f3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8629/11838010/d44f954fbe8e/sciadv.adr9266-f4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8629/11838010/6e7da75fe996/sciadv.adr9266-f5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8629/11838010/f7bc36d44c98/sciadv.adr9266-f6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8629/11838010/c8f53a2ac4ef/sciadv.adr9266-f7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8629/11838010/b823dcd7be6d/sciadv.adr9266-f8.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8629/11838010/0f37c8bc0098/sciadv.adr9266-f1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8629/11838010/58fc53576e69/sciadv.adr9266-f2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8629/11838010/674a6f87176a/sciadv.adr9266-f3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8629/11838010/d44f954fbe8e/sciadv.adr9266-f4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8629/11838010/6e7da75fe996/sciadv.adr9266-f5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8629/11838010/f7bc36d44c98/sciadv.adr9266-f6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8629/11838010/c8f53a2ac4ef/sciadv.adr9266-f7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8629/11838010/b823dcd7be6d/sciadv.adr9266-f8.jpg

相似文献

[1]
Bioengineered protein nanocarrier facilitating siRNA escape from lysosomes for targeted RNAi therapy in glioblastoma.

Sci Adv. 2025-2-21

[2]
Single siRNA Nanocapsules for Effective siRNA Brain Delivery and Glioblastoma Treatment.

Adv Mater. 2020-6

[3]
Localized RNAi therapeutics of chemoresistant grade IV glioma using hyaluronan-grafted lipid-based nanoparticles.

ACS Nano. 2015-1-8

[4]
T7 peptide-functionalized nanoparticles utilizing RNA interference for glioma dual targeting.

Int J Pharm. 2013-7-15

[5]
Development of siRNA-loaded chitosan nanoparticles targeting Galectin-1 for the treatment of glioblastoma multiforme via intranasal administration.

J Control Release. 2016-2-21

[6]
A tumor-targeting cRGD-EGFR siRNA conjugate and its anti-tumor effect on glioblastoma in vitro and in vivo.

Drug Deliv. 2017-11

[7]
Spherical nucleic acid nanoparticle conjugates as an RNAi-based therapy for glioblastoma.

Sci Transl Med. 2013-10-30

[8]
RNA nanoparticle as a vector for targeted siRNA delivery into glioblastoma mouse model.

Oncotarget. 2015-6-20

[9]
Brain Targeted Gold Liposomes Improve RNAi Delivery for Glioblastoma.

Int J Nanomedicine. 2020-4-23

[10]
Polymeric Polylactic Acid-Glycolic Acid-Based Nanoparticles Deliver Nintedanib Across the Blood-Brain Barrier to Inhibit Glioblastoma Growth.

Int J Mol Sci. 2025-1-7

引用本文的文献

[1]
The Roles of RNA-Binding Proteins in Vasculogenic Mimicry Regulation in Glioblastoma.

Int J Mol Sci. 2025-8-18

[2]
Beyond the Walls of Troy: A Scoping Review on Pharmacological Strategies to Enhance Drug Delivery Across the Blood-Brain Barrier and Blood-Tumor Barrier.

Int J Mol Sci. 2025-7-22

[3]
Structural characteristics, multifunctional applications, and research prospects of ferritin: a case study of sturgeon ferritin.

Front Nutr. 2025-7-23

[4]
Nanoplatform-Enabled Genetic Interventions for Central Nervous System Disorders: Advances in Delivery Strategies and Therapeutic Potential.

Adv Genet (Hoboken). 2025-6-24

[5]
Innovation in mRNA Vaccines and RNAi via Protein Nanocages.

Vaccines (Basel). 2025-6-18

[6]
Development of Stimuli-Responsive Polymeric Nanomedicines in Hypoxic Tumors and Their Therapeutic Promise in Oral Cancer.

Polymers (Basel). 2025-4-9

[7]
Engineered nanoparticles as a promising drug delivery system for glioblastoma multiforme treatment.

Ther Deliv. 2025-6

本文引用的文献

[1]
Membrane-destabilizing ionizable lipid empowered imaging-guided siRNA delivery and cancer treatment.

Exploration (Beijing). 2021-9-1

[2]
Molecularly engineered siRNA conjugates for tumor-targeted RNAi therapy.

J Control Release. 2022-11

[3]
Re-engineering the inner surface of ferritin nanocage enables dual drug payloads for synergistic tumor therapy.

Theranostics. 2022

[4]
Thermostable ionizable lipid-like nanoparticle (iLAND) for RNAi treatment of hyperlipidemia.

Sci Adv. 2022-2-18

[5]
Telomerase as a therapeutic target in glioblastoma.

Neuro Oncol. 2021-12-1

[6]
Ferritin: A Multifunctional Nanoplatform for Biological Detection, Imaging Diagnosis, and Drug Delivery.

Acc Chem Res. 2021-9-7

[7]
Redesign of protein nanocages: the way from 0D, 1D, 2D to 3D assembly.

Chem Soc Rev. 2021-3-21

[8]
Epigenetics of glioblastoma multiforme: From molecular mechanisms to therapeutic approaches.

Semin Cancer Biol. 2022-8

[9]
Lipid nanoparticles for nucleic acid delivery: Current perspectives.

Adv Drug Deliv Rev. 2020

[10]
Ferritin drug carrier (FDC) for tumor targeting therapy.

J Control Release. 2019-9-5

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索