Ken and Ruth Davee Department of Neurology, The Northwestern Brain Tumor Institute, The Robert H. Lurie Comprehensive Cancer Center, Northwestern University, 303 East Superior, Chicago, IL 60611, USA.
Sci Transl Med. 2013 Oct 30;5(209):209ra152. doi: 10.1126/scitranslmed.3006839.
Glioblastoma multiforme (GBM) is a neurologically debilitating disease that culminates in death 14 to 16 months after diagnosis. An incomplete understanding of how cataloged genetic aberrations promote therapy resistance, combined with ineffective drug delivery to the central nervous system, has rendered GBM incurable. Functional genomics efforts have implicated several oncogenes in GBM pathogenesis but have rarely led to the implementation of targeted therapies. This is partly because many "undruggable" oncogenes cannot be targeted by small molecules or antibodies. We preclinically evaluate an RNA interference (RNAi)-based nanomedicine platform, based on spherical nucleic acid (SNA) nanoparticle conjugates, to neutralize oncogene expression in GBM. SNAs consist of gold nanoparticles covalently functionalized with densely packed, highly oriented small interfering RNA duplexes. In the absence of auxiliary transfection strategies or chemical modifications, SNAs efficiently entered primary and transformed glial cells in vitro. In vivo, the SNAs penetrated the blood-brain barrier and blood-tumor barrier to disseminate throughout xenogeneic glioma explants. SNAs targeting the oncoprotein Bcl2Like12 (Bcl2L12)--an effector caspase and p53 inhibitor overexpressed in GBM relative to normal brain and low-grade astrocytomas--were effective in knocking down endogenous Bcl2L12 mRNA and protein levels, and sensitized glioma cells toward therapy-induced apoptosis by enhancing effector caspase and p53 activity. Further, systemically delivered SNAs reduced Bcl2L12 expression in intracerebral GBM, increased intratumoral apoptosis, and reduced tumor burden and progression in xenografted mice, without adverse side effects. Thus, silencing antiapoptotic signaling using SNAs represents a new approach for systemic RNAi therapy for GBM and possibly other lethal malignancies.
多形性胶质母细胞瘤(GBM)是一种神经功能障碍性疾病,从确诊到死亡的时间为 14 至 16 个月。由于不完全了解已分类的遗传异常如何促进耐药性,再加上中枢神经系统的药物输送效率低下,GBM 仍无法治愈。功能基因组学研究表明,几种癌基因参与了 GBM 的发病机制,但很少能实施靶向治疗。这在一定程度上是因为许多“不可成药”的癌基因无法用小分子或抗体靶向。我们临床前评估了一种基于 RNA 干扰(RNAi)的纳米医学平台,该平台基于球形核酸(SNA)纳米颗粒缀合物,用于中和 GBM 中的癌基因表达。SNA 由金纳米颗粒共价功能化而成,其中紧密排列着高度定向的小干扰 RNA 双链。在没有辅助转染策略或化学修饰的情况下,SNA 能够有效地进入体外原代和转化的神经胶质细胞。在体内,SNA 穿透血脑屏障和血肿瘤屏障,在异种神经胶质瘤外植体中扩散。针对癌蛋白 Bcl2Like12(Bcl2L12)的 SNA——一种在 GBM 中相对于正常大脑和低级别星形细胞瘤过度表达的效应半胱天冬酶和 p53 抑制剂——可有效降低内源性 Bcl2L12 mRNA 和蛋白水平,并通过增强效应半胱天冬酶和 p53 活性,使神经胶质瘤细胞对治疗诱导的细胞凋亡敏感。此外,系统递送的 SNA 降低了颅内 GBM 中的 Bcl2L12 表达,增加了肿瘤内细胞凋亡,并减少了异种移植小鼠中的肿瘤负担和进展,而无不良反应。因此,使用 SNA 沉默抗凋亡信号代表了一种用于 GBM 及其他可能致命性恶性肿瘤的系统 RNAi 治疗的新方法。
Sci Transl Med. 2013-10-30
Int J Nanomedicine. 2020-4-23
Proc Natl Acad Sci U S A. 2017-4-3
Genes Dev. 2007-1-1
Proc Natl Acad Sci U S A. 2008-8-5
Nanoscale. 2025-8-28
Medicina (Kaunas). 2025-8-14
Pharmaceutics. 2025-6-4
ACS Nano. 2025-5-27
Proc Natl Acad Sci U S A. 2013-7-30
Proc Natl Acad Sci U S A. 2013-4-23
J Am Chem Soc. 2012-9-28
Curr Pharm Biotechnol. 2012-9
Proc Natl Acad Sci U S A. 2012-7-6
Int J Pharm. 2012-6-19
Genes Dev. 2012-4-15
J Am Chem Soc. 2012-1-9
J Am Chem Soc. 2011-3-17