Suppr超能文献

使用通用数据模型进行治疗模式分析的效用:一项范围综述。

Utility of Treatment Pattern Analysis Using a Common Data Model: A Scoping Review.

作者信息

Park Eun-Gee, Kim Min Jung, Kim Jinseo, Shin Kichul, Ryu Borim

机构信息

Center for Data Science, Biomedical Research Institute, Seoul Metropolitan Government-Seoul National University Boramae Medical Center, Seoul, Korea.

Division of Rheumatology, Department of Internal Medicine, Seoul Metropolitan Government-Seoul National University Boramae Medical Center, Seoul, Korea.

出版信息

Healthc Inform Res. 2025 Jan;31(1):4-15. doi: 10.4258/hir.2025.31.1.4. Epub 2025 Jan 31.

Abstract

OBJECTIVES

We aimed to derive observational research evidence on treatment patterns through a scoping review of common data model (CDM)-based publications.

METHODS

We searched the medical literature databases PubMed and EMBASE, as well as the Observational Health Data Sciences and Informatics (OHDSI) website, for papers published between January 1, 2010 and August 21, 2023 to identify research papers relevant to our topic.

RESULTS

Eighteen articles satisfied the inclusion criteria for this scoping review. We summarized study characteristics such as phenotypes, patient numbers, data periods, countries, Observational Medical Outcomes Partnership (OMOP) CDM databases, and definitions of index date and target cohort. Type 2 diabetes mellitus emerged as the most frequently studied disease, covered in five articles, followed by hypertension and depression, each addressed in four articles. Biguanides, with metformin as the primary drug, were the most commonly prescribed first-line treatments for type 2 diabetes mellitus. Most studies utilized sunburst plots to visualize treatment patterns, whereas two studies used Sankey plots. Various software tools were employed for treatment pattern analysis, including JavaScript, the open-source ATLAS by OHDSI, R code, and the R package "TreatmentPatterns."

CONCLUSIONS

This study provides a comprehensive overview of research on treatment patterns using the CDM, highlighting the growing importance of OMOP CDM in enabling multinational observational network studies and advancing collaborative research in this field.

摘要

目的

我们旨在通过对基于通用数据模型(CDM)的出版物进行范围综述,得出关于治疗模式的观察性研究证据。

方法

我们检索了医学文献数据库PubMed和EMBASE,以及观察性健康数据科学与信息学(OHDSI)网站,查找2010年1月1日至2023年8月21日期间发表的论文,以确定与我们主题相关的研究论文。

结果

18篇文章符合本范围综述的纳入标准。我们总结了研究特征,如表型、患者数量、数据时间段、国家、观察性医疗结局合作组织(OMOP)CDM数据库以及索引日期和目标队列的定义。2型糖尿病成为研究最频繁的疾病,有5篇文章涉及,其次是高血压和抑郁症,各有4篇文章论述。以二甲双胍为主要药物的双胍类药物是2型糖尿病最常用的一线治疗药物。大多数研究使用旭日图来可视化治疗模式,而两项研究使用桑基图。各种软件工具被用于治疗模式分析,包括JavaScript、OHDSI的开源ATLAS、R代码和R包“TreatmentPatterns”。

结论

本研究全面概述了使用CDM进行的治疗模式研究,凸显了OMOP CDM在推动跨国观察性网络研究和促进该领域合作研究方面日益重要的作用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f567/11854637/66107077ce74/hir-2025-31-1-4f1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验