Dai Junlong, He Cong, Jin Liang, Chen Chengwei, Wu Jie, Bian Yun
School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China.
Department of Radiology, Huadong Hospital, Fudan University, Shanghai, China.
J Xray Sci Technol. 2025 Mar;33(2):461-471. doi: 10.1177/08953996251313719. Epub 2025 Feb 18.
Early diagnosis of pancreatic cystic neoplasm (PCN) is crucial for patient survival. This study proposes M-YOLO, a novel model combining Mamba architecture and YOLO, to enhance the detection of pancreatic cystic tumors. The model addresses the technical challenge posed by the tumors' complex morphological features in medical images.
This study develops an innovative deep learning network architecture, M-YOLO (Mamba YOLOv10), which combines the advantages of Mamba and YOLOv10 and aims to improve the accuracy and efficiency of pancreatic cystic neoplasm(PCN) detection. The Mamba architecture, with its superior sequence modeling capabilities, is ideally suited for processing the rich contextual information contained in medical images. At the same time, YOLOv10's fast object detection feature ensures the system's viability for application in clinical practice.
M-YOLO has a high sensitivity of 0.98, a specificity of 0.92, a precision of 0.96, an F1 value of 0.97, an accuracy of 0.93, as well as a mean average precision (mAP) of 0.96 at 50% intersection-to-union (IoU) threshold on the dataset provided by Changhai Hospital.
M-YOLO(Mamba YOLOv10) enhances the identification performance of PCN by integrating the deep feature extraction capability of Mamba and the fast localization technique of YOLOv10.
胰腺囊性肿瘤(PCN)的早期诊断对患者生存至关重要。本研究提出了M-YOLO,一种结合曼巴架构和YOLO的新型模型,以提高胰腺囊性肿瘤的检测能力。该模型解决了医学图像中肿瘤复杂形态特征带来的技术挑战。
本研究开发了一种创新的深度学习网络架构M-YOLO(曼巴YOLOv10),它结合了曼巴和YOLOv10的优势,旨在提高胰腺囊性肿瘤(PCN)检测的准确性和效率。曼巴架构具有卓越的序列建模能力,非常适合处理医学图像中包含的丰富上下文信息。同时,YOLOv10的快速目标检测功能确保了该系统在临床实践中的应用可行性。
在长海医院提供的数据集上,M-YOLO在50%交并比(IoU)阈值下具有0.98的高灵敏度、0.92的特异性、0.96的精度、0.97的F1值、0.93的准确率以及0.96的平均精度均值(mAP)。
M-YOLO(曼巴YOLOv10)通过整合曼巴的深度特征提取能力和YOLOv10的快速定位技术,提高了PCN的识别性能。