Wright Elizabeth B, Larsen Erik G, Padilla-Rodriguez Marco, Langlais Paul R, Bhattacharya Martha R C
bioRxiv. 2025 Feb 2:2025.02.01.635992. doi: 10.1101/2025.02.01.635992.
Disruption of endolysosomal acidification is a hallmark of several neurodevelopmental and neurodegenerative disorders. Impaired acidification causes accumulation of toxic protein aggregates and disrupts neuronal homeostasis, yet the molecular mechanisms regulating endolysosomal pH in neurons remain poorly understood. A critical regulator of lumenal acidification is the vacuolar ATPase (V-ATPase), a proton pump whose activity depends on dynamic assembly of its V0 and V1 subdomains. In this study, we identify transmembrane protein 184B (TMEM184B) as a novel regulator of endolysosomal acidification in neurons. TMEM184B is an evolutionarily conserved 7-pass transmembrane protein required for synaptic structure and function, and sequence variation in TMEM184B causes neurodevelopmental disorders, but the mechanism for this effect is unknown. We performed proteomic analysis of TMEM184B-interacting proteins and identified enrichment of components involved in endosomal trafficking and function, including the V-ATPase. TMEM184B localizes to early and late endosomes, further supporting a role in the endosomal system. Loss of TMEM184B results in significant reductions in endolysosomal acidification within cultured mouse cortical neurons. This alteration in pH is associated with impaired assembly of the V-ATPase V0 and V1 subcomplexes in the TMEM184B mutant mouse brain, suggesting a mechanism by which TMEM184B promotes flux through the endosomal pathway. Overall, these findings identify a new contributor in maintaining endosomal function and provide a mechanistic basis for disrupted neuronal function in human TMEM184B-associated nervous system disorders.
Endolysosomal acidification is essential for neuronal protein homeostasis, yet its regulation in neurons remains poorly understood. Here, we identify TMEM184B as a key regulator of this process, establishing its first known cellular role. We show that TMEM184B interacts with vacuolar ATPase (V-ATPase) components and promotes the assembly of its V0 and V1 subdomains, facilitating lumenal acidification. Loss of TMEM184B disrupts endolysosomal pH in neurons, potentially impairing proteostasis. These findings reveal a critical function for TMEM184B in neuronal maintenance and provide mechanistic insight into its link to neurological disorders. This work advances our understanding of endolysosomal regulation and suggests TMEM184B regulation could improve outcomes in diseases involving lysosomal dysfunction.
内溶酶体酸化的破坏是几种神经发育和神经退行性疾病的一个标志。酸化受损会导致有毒蛋白质聚集体的积累并破坏神经元内环境稳定,然而调节神经元内溶酶体pH值的分子机制仍知之甚少。腔内酸化的一个关键调节因子是液泡ATP酶(V-ATP酶),这是一种质子泵,其活性取决于其V0和V1亚结构域的动态组装。在这项研究中,我们确定跨膜蛋白184B(TMEM184B)是神经元内溶酶体酸化的一种新型调节因子。TMEM184B是一种在进化上保守的7次跨膜蛋白,是突触结构和功能所必需的,并且TMEM184B中的序列变异会导致神经发育障碍,但其作用机制尚不清楚。我们对与TMEM184B相互作用的蛋白质进行了蛋白质组学分析,并确定了参与内体运输和功能的成分的富集,包括V-ATP酶。TMEM184B定位于早期和晚期内体,进一步支持其在内体系统中的作用。TMEM184B的缺失导致培养的小鼠皮质神经元内溶酶体酸化显著降低。这种pH值的改变与TMEM184B突变小鼠大脑中V-ATP酶V0和V1亚复合物的组装受损有关,提示了TMEM184B促进内体途径通量的一种机制。总体而言,这些发现确定了维持内体功能的一个新因素,并为人类TMEM184B相关神经系统疾病中神经元功能破坏提供了机制基础。
内溶酶体酸化对于神经元蛋白质稳态至关重要,但其在神经元中的调节仍知之甚少。在这里,我们确定TMEM184B是这一过程的关键调节因子,确立了其第一个已知的细胞作用。我们表明TMEM184B与液泡ATP酶(V-ATPase)成分相互作用,并促进其V0和V1亚结构域的组装,促进腔内酸化。TMEM184B的缺失会破坏神经元内溶酶体的pH值,可能损害蛋白质稳态。这些发现揭示了TMEM184B在神经元维持中的关键功能,并为其与神经系统疾病的联系提供了机制性见解。这项工作推进了我们对内溶酶体调节的理解,并表明调节TMEM184B可能改善涉及溶酶体功能障碍的疾病的预后。