Suppr超能文献

爱尔兰基于国家行政代码系统的医院获得性静脉血栓栓塞症评估体系的开发与评估

Development and evaluation of a national administrative code-based system for estimation of hospital-acquired venous thromboembolism in Ireland.

作者信息

Kirke Ciara, Daly Richard, Dalchan Therese, Curley Jacqui, Buckley Ruth, Lynch Deirdre, Crowley Maeve P, Kevane Barry, Gallagher Emer, O'Neill Ann Marie, Ní Áinle Fionnuala

机构信息

National Medication Safety Programme, Dublin, Ireland.

Cork University Hospital, Cork, Ireland.

出版信息

BMJ Open. 2025 Feb 20;15(2):e084951. doi: 10.1136/bmjopen-2024-084951.

Abstract

BACKGROUND

Hospital-acquired venous thromboembolism (HA-VTE) is a significant patient safety concern contributing to preventable deaths. Internationally, estimating HA-VTE relies on administrative codes, in particular the International Classification of Disease (ICD) codes, but their accuracy has been debated. The Irish Health Service Executive (HSE) launched a National Key Performance Indicator (KPI) in 2019 for monitoring HA-VTE rates using the Australian Modification of ICD-10 (ICD-10-AM) codes.

OBJECTIVES

This study aims to (1) describe the development of the national HSE KPI and determine the national HA-VTE occurrence rate per 1000 discharges in 2022; (2) assess the contribution of each VTE ICD-10-AM code to the national HA-VTE figure; (3) estimate the positive predictive value (PPV) of the HSE KPI against true HA-VTE, in a single large tertiary (Irish Model 4) hospital.

METHODS

A retrospective observational study used national data from Irish publicly funded acute hospitals, focusing on discharges from 2022. The HSE KPI was based on an assessment of HA-VTE as a rate per 1000 hospital discharges (as per the national metadata). Inclusion criteria were inpatient only, length of stay ≥2 days, age ≥16 years and non-maternity admission type (elective or emergency only). Maternity and paediatric hospitals were excluded.The PPV was determined through a detailed review of HA-VTE cases identified through the HSE KPI from April 2020 to October 2022 in a single large tertiary referral centre and determining the proportion indicating a true HA-VTE. Data analysis employed GraphPad Prism (Horsham, PA, USA).

RESULTS

The national mean monthly HA-VTE rate was 11.38 per 1000 discharges in 2022. Pulmonary embolism (PE) without acute cor pulmonale (I26.9) was the most frequent contributor (59%). The mean PPV in the tertiary hospital was 0.37, with false positives attributed to acute illnesses, historical VTE coding errors and dual VTE diagnoses at admission.

DISCUSSION

HA-VTE is a preventable cause of morbidity and mortality, necessitating accurate measurement. Administrative codes, while cost-effective and timely, reveal limitations in precision. This study identifies opportunities to improve code accuracy, address coding challenges and enhance the PPV.

CONCLUSION

This study provides valuable insights into estimated HA-VTE rates, the contribution of each individual ICD-10-AM code to the overall HA-VTE rate and the PPV of the measure. Ongoing refinement and quality enhancement are needed.

摘要

背景

医院获得性静脉血栓栓塞症(HA-VTE)是一个严重的患者安全问题,会导致可预防的死亡。在国际上,估计HA-VTE依赖于行政编码,特别是国际疾病分类(ICD)编码,但其准确性一直存在争议。爱尔兰卫生服务执行局(HSE)于2019年推出了一项国家关键绩效指标(KPI),用于使用澳大利亚对ICD-10的修订版(ICD-10-AM)编码监测HA-VTE发生率。

目的

本研究旨在(1)描述国家HSE KPI的制定过程,并确定2022年每1000例出院患者的国家HA-VTE发生率;(2)评估每个VTE ICD-10-AM编码对国家HA-VTE数据的贡献;(3)在一家大型三级(爱尔兰模式4)医院中,估计HSE KPI相对于真正的HA-VTE的阳性预测值(PPV)。

方法

一项回顾性观察研究使用了爱尔兰公共资助的急性医院的国家数据,重点关注2022年的出院情况。HSE KPI基于对HA-VTE的评估,以每1000例医院出院患者的发生率来计算(根据国家元数据)。纳入标准仅为住院患者,住院时间≥2天,年龄≥16岁且入院类型为非产科(仅包括择期或急诊)。产科和儿科医院被排除在外。通过对2020年4月至2022年10月在一家大型三级转诊中心通过HSE KPI识别出的HA-VTE病例进行详细审查,并确定表明真正HA-VTE的比例,来确定PPV。数据分析采用GraphPad Prism(美国宾夕法尼亚州霍舍姆)。

结果

2022年全国每月HA-VTE的平均发生率为每1000例出院患者11.38例。无急性肺心病的肺栓塞(PE,I26.9)是最常见的原因(59%)。三级医院的平均PPV为0.37,假阳性归因于急性疾病、既往VTE编码错误以及入院时的双重VTE诊断。

讨论

HA-VTE是发病率和死亡率的可预防原因,需要准确测量。行政编码虽然具有成本效益且及时,但在精度方面存在局限性。本研究确定了提高编码准确性、应对编码挑战和提高PPV的机会。

结论

本研究为估计的HA-VTE发生率、每个ICD-10-AM编码对总体HA-VTE发生率的贡献以及该测量方法的PPV提供了有价值的见解。需要持续改进和提高质量。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a981/11842983/803dd7662256/bmjopen-15-2-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验