Suppr超能文献

通过行政编码识别医院获得性静脉血栓栓塞的准确性:对大数据和机器学习研究的影响。

Accuracy of identifying hospital acquired venous thromboembolism by administrative coding: implications for big data and machine learning research.

机构信息

University of Pittsburgh School of Nursing, 336 Victoria Hall; 3500 Victoria Street, Pittsburgh, PA, 15213, USA.

University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA.

出版信息

J Clin Monit Comput. 2022 Apr;36(2):397-405. doi: 10.1007/s10877-021-00664-6. Epub 2021 Feb 8.

Abstract

Big data analytics research using heterogeneous electronic health record (EHR) data requires accurate identification of disease phenotype cases and controls. Overreliance on ground truth determination based on administrative data can lead to biased and inaccurate findings. Hospital-acquired venous thromboembolism (HA-VTE) is challenging to identify due to its temporal evolution and variable EHR documentation. To establish ground truth for machine learning modeling, we compared accuracy of HA-VTE diagnoses made by administrative coding to manual review of gold standard diagnostic test results. We performed retrospective analysis of EHR data on 3680 adult stepdown unit patients identifying HA-VTE. International Classification of Diseases, Ninth Revision (ICD-9-CM) codes for VTE were identified. 4544 radiology reports associated with VTE diagnostic tests were screened using terminology extraction and then manually reviewed by a clinical expert to confirm diagnosis. Of 415 cases with ICD-9-CM codes for VTE, 219 were identified with acute onset type codes. Test report review identified 158 new-onset HA-VTE cases. Only 40% of ICD-9-CM coded cases (n = 87) were confirmed by a positive diagnostic test report, leaving the majority of administratively coded cases unsubstantiated by confirmatory diagnostic test. Additionally, 45% of diagnostic test confirmed HA-VTE cases lacked corresponding ICD codes. ICD-9-CM coding missed diagnostic test-confirmed HA-VTE cases and inaccurately assigned cases without confirmed VTE, suggesting dependence on administrative coding leads to inaccurate HA-VTE phenotyping. Alternative methods to develop more sensitive and specific VTE phenotype solutions portable across EHR vendor data are needed to support case-finding in big-data analytics.

摘要

使用异构电子健康记录 (EHR) 数据进行大数据分析研究需要准确识别疾病表型病例和对照。过度依赖基于行政数据的真实情况确定可能导致有偏差和不准确的发现。由于其时间演变和可变的 EHR 记录,医院获得性静脉血栓栓塞症 (HA-VTE) 难以识别。为了为机器学习建模建立真实情况,我们比较了行政编码诊断的 HA-VTE 准确性与对黄金标准诊断测试结果的手动审查。我们对 3680 名成人过渡病房患者的 EHR 数据进行了回顾性分析,以确定 HA-VTE。确定了静脉血栓栓塞症的国际疾病分类,第九修订版 (ICD-9-CM) 代码。使用术语提取筛选了与 VTE 诊断测试相关的 4544 份放射学报告,然后由临床专家进行手动审查以确认诊断。在有 ICD-9-CM 编码的 VTE 病例中,有 219 例为急性发作型编码。测试报告审查确定了 158 例新发 HA-VTE 病例。只有 40%的 ICD-9-CM 编码病例(n=87)通过阳性诊断测试报告得到证实,其余大多数行政编码病例未经确认性诊断测试证实。此外,45%的诊断测试确认的 HA-VTE 病例缺乏相应的 ICD 代码。ICD-9-CM 编码错过了诊断测试确认的 HA-VTE 病例,并且不准确地分配了没有确认的 VTE 病例,这表明对行政编码的依赖导致了不准确的 HA-VTE 表型。需要开发更敏感和特异性的 VTE 表型解决方案,并在 EHR 供应商数据之间具有可移植性,以支持大数据分析中的病例发现。

相似文献

2
Administrative codes inaccurately identify recurrent venous thromboembolism: The CVRN VTE study.
Thromb Res. 2020 May;189:112-118. doi: 10.1016/j.thromres.2020.02.023. Epub 2020 Mar 5.
5
Improving accuracy of International Classification of Diseases codes for venous thromboembolism in administrative data.
Thromb Res. 2015 Apr;135(4):616-20. doi: 10.1016/j.thromres.2015.01.012. Epub 2015 Jan 14.
10
Identifying venous thromboembolism and major bleeding in emergency room discharges using administrative data.
Thromb Res. 2015 Dec;136(6):1195-8. doi: 10.1016/j.thromres.2015.10.035. Epub 2015 Oct 29.

引用本文的文献

2
Validating adverse events in administrative healthcare data in ireland: a retrospective chart review study.
BMC Health Serv Res. 2025 Aug 20;25(1):1113. doi: 10.1186/s12913-025-13201-x.
3
TriNetX and Real-World Evidence: A Critical Review of Its Strengths, Limitations, and Bias Considerations in Clinical Research.
ASIDE Intern Med. 2025 Apr;1(2):24-33. doi: 10.71079/aside.im.03222516. Epub 2025 Mar 22.
5
Implementing a Quality Intervention to Improve Confidence in Outpatient Venous Thromboembolism Management.
Cardiol Ther. 2024 Sep;13(3):541-556. doi: 10.1007/s40119-024-00370-9. Epub 2024 May 21.
8
Artificial intelligence for venous thromboembolism prophylaxis: Clinician perspectives.
Res Pract Thromb Haemost. 2023 Nov 23;7(8):102272. doi: 10.1016/j.rpth.2023.102272. eCollection 2023 Nov.
9
ClotCatcher: a novel natural language model to accurately adjudicate venous thromboembolism from radiology reports.
BMC Med Inform Decis Mak. 2023 Nov 16;23(1):262. doi: 10.1186/s12911-023-02369-z.

本文引用的文献

1
Prevention, diagnosis, and management of venous thromboembolism in the critically ill surgical and trauma patient.
Curr Opin Crit Care. 2020 Dec;26(6):640-647. doi: 10.1097/MCC.0000000000000771.
3
What Does Venous Thromboembolism Mean in the National Surgical Quality Improvement Program?
J Surg Res. 2020 Jul;251:94-99. doi: 10.1016/j.jss.2020.01.011. Epub 2020 Feb 28.
4
Do no harm: a roadmap for responsible machine learning for health care.
Nat Med. 2019 Sep;25(9):1337-1340. doi: 10.1038/s41591-019-0548-6. Epub 2019 Aug 19.
5
Advances in Electronic Phenotyping: From Rule-Based Definitions to Machine Learning Models.
Annu Rev Biomed Data Sci. 2018 Jul;1:53-68. doi: 10.1146/annurev-biodatasci-080917-013315. Epub 2018 May 23.
7
Big data and machine learning algorithms for health-care delivery.
Lancet Oncol. 2019 May;20(5):e262-e273. doi: 10.1016/S1470-2045(19)30149-4.
9
Informatics and machine learning to define the phenotype.
Expert Rev Mol Diagn. 2018 Mar;18(3):219-226. doi: 10.1080/14737159.2018.1439380. Epub 2018 Feb 16.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验