Suppr超能文献

在资源有限的环境下,将医疗保健利用数据库整合用于前瞻性队列研究中的癌症确诊:墨西哥教师队列研究

Integrating healthcare utilization databases for cancer ascertainment in a prospective cohort in a limited resource setting: the Mexican Teachers' Cohort.

作者信息

Gómez-Flores-Ramos Liliana, Brochier Marion, Stern Dalia, García-Anaya Antonio, Cortés-Valencia Adrian, Jaen Jocelyn, Sánchez-Blas Hugo R, Lozano-Esparza Susana, Catzin-Kuhlmann Andrés, Hernández-Ávila Juan Eugenio, Pon Angélica, Rivera-Ontiveros Olga, Miranda-Aguirre Pabel, Pérez-Escobedo Patricia, Castellanos Alberto, Chávez-Cárdenas Mildred, Arrieta Oscar, Mohar Alejandro, López-Ridaura Ruy, Romieu Isabelle, Hernández-Avila Mauricio, Lajous Martín

机构信息

CONAHCYT, Centro de Investigación en Salud Poblacional, Instituto Nacional de Salud Pública, Cuernavaca, Morelos, Mexico.

Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Québec, Canada.

出版信息

Cancer Causes Control. 2025 Jul;36(7):733-742. doi: 10.1007/s10552-025-01973-w. Epub 2025 Feb 20.

Abstract

PURPOSE

Prospective cohort development in low-resource settings may be limited by cancer registry population coverage; however, information routinely collected in health systems may offer opportunities to advance cancer research. We aim to illustrate in a cohort study in Mexico, a cancer ascertainment strategy that integrates multiple sources of information including healthcare utilization databases.

METHODS

The Mexican Teachers' Cohort (MTC) includes 114,545 female teachers aged 25 years and older who completed a baseline questionnaire between 2006 and 2010 and were breast cancer free. We used healthcare utilization databases (including electronic health records), self-reported breast cancer, mortality, and cancer registries to identify women with incident breast cancer. We estimated the positive predictive value for self-reported breast cancer and age-specific and age-standardized incidence rates for breast cancer and corresponding 95% confidence intervals (95%CI) calculating person-time from the date of baseline questionnaire response to diagnosis, death, or December 31, 2019.

RESULTS

Between baseline and 2019, we identified 1,313 women with incident breast cancer. We established the diagnosis in 88% using healthcare utilization databases, 6% using cancer and mortality registries, and 6% directly by contacting participants. The positive predictive value of self-reported diagnosed and treated breast cancer was 94% (95%CI 91, 97). The age-standardized incidence was 77.0 per 100,000 person-years (95%CI 75.9, 84.3). The highest incidence was observed in women aged 65-69 years (185.3 per 100,000 person-years).

CONCLUSION

Leveraging healthcare utilization databases to establish cancer diagnoses within prospective cohorts may offer an opportunity to advance global cancer research.

摘要

目的

在资源匮乏地区开展前瞻性队列研究可能会受到癌症登记人群覆盖范围的限制;然而,卫生系统中常规收集的信息可能为推进癌症研究提供机会。我们旨在通过墨西哥的一项队列研究,阐明一种整合包括医疗保健利用数据库在内的多种信息来源的癌症确诊策略。

方法

墨西哥教师队列(MTC)包括114,545名年龄在25岁及以上的女性教师,她们在2006年至2010年期间完成了基线问卷调查,且当时无乳腺癌。我们利用医疗保健利用数据库(包括电子健康记录)、自我报告的乳腺癌、死亡率和癌症登记数据来识别新发乳腺癌女性。我们估计了自我报告乳腺癌的阳性预测值以及乳腺癌的年龄特异性和年龄标准化发病率,并计算了从基线问卷调查回复日期到诊断、死亡或2019年12月31日的人时对应的95%置信区间(95%CI)。

结果

在基线至2019年期间,我们识别出1313名新发乳腺癌女性。我们通过医疗保健利用数据库确诊了88%的病例,通过癌症和死亡率登记数据确诊了6%的病例,直接联系参与者确诊了6%的病例。自我报告诊断和治疗过乳腺癌的阳性预测值为94%(95%CI 91, 97)。年龄标准化发病率为每10万人年77.0例(95%CI 75.9, 84.3)。65 - 69岁女性的发病率最高(每10万人年185.3例)。

结论

在前瞻性队列中利用医疗保健利用数据库来确立癌症诊断可能为推进全球癌症研究提供机会。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验