文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

4-氨基喹啉作为设计抗利什曼原虫药物的优势骨架:结构-性质关系及关键生物学靶点

4-Aminoquinoline as a privileged scaffold for the design of leishmanicidal agents: structure-property relationships and key biological targets.

作者信息

Romero Angel H, Delgado Francisco

机构信息

Grupo de Química Orgánica Medicinal, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay.

出版信息

Front Chem. 2025 Jan 29;12:1527946. doi: 10.3389/fchem.2024.1527946. eCollection 2024.


DOI:10.3389/fchem.2024.1527946
PMID:39981131
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11841433/
Abstract

Leishmaniasis is one of the most important neglected tropical diseases, with more than two million new cases annually. It is endemic in several regions worldwide, representing a public health problem for more than 88 countries, in particular in the tropical and subtropical regions of developing countries. At the moment, there are neither approved vaccines nor effective drugs for the treatment of human leishmaniasis for any of its three typical clinical manifestations, and, importantly, the drugs of clinical use have several side effects, require complex administration regimens, present high cost, and are ineffective in many populations due to pathogen resistance. Moreover, beyond the pharmacological exigencies, there are other challenges concerning its parasitic nature, such as its great genetic plasticity and adaptability, enabling it to activate a battery of genes to develop resistance quickly. All these aspects demand the identification and development of new, safe, and effective chemical systems, which must not only be focused on medicinal chemistry and pharmacological aspects but also consider key aspects relative to parasite survival. In this sense, the quinolines and, in particular, 4-aminoquinoline, represent a privileged scaffold for the design of potential leishmanicidal candidates due not only to their versatility to generate highly active and selective compounds but also to their correlation with well-defined biological targets. These facts make it possible to generate safe leishmanicidal agents targeted at key aspects of parasite survival. The current review summarizes the most current examples of leishmanicidal agents based on 4-aminoquinolines focusing the analysis on two essential aspects: (i) structure-property relationship to identify the key pharmacophores and (ii) mode of action focused on key targets in parasite survival (, depolarization of potential mitochondrial, accumulation into macrophage lysosome, and immunostimulation of host cells). With that information, we seek to give useful guidelines for interested researchers to face the drug discovery and development process for selective and potent leishmanicidal agents based on 4-aminoquinolines.

摘要

利什曼病是最重要的被忽视热带病之一,每年有超过200万新发病例。该病在全球多个地区呈地方性流行,对88个以上国家构成公共卫生问题,尤其是在发展中国家的热带和亚热带地区。目前,针对人类利什曼病的三种典型临床表现,既没有获批的疫苗,也没有有效的治疗药物,重要的是,临床使用的药物有多种副作用,给药方案复杂,成本高昂,且由于病原体耐药性,在许多人群中无效。此外,除了药理学需求外,其寄生性质还带来了其他挑战,例如其巨大的遗传可塑性和适应性,使其能够激活一系列基因以迅速产生耐药性。所有这些方面都需要鉴定和开发新的、安全有效的化学体系,这不仅要关注药物化学和药理学方面,还应考虑与寄生虫存活相关的关键方面。从这个意义上讲,喹啉类化合物,特别是4-氨基喹啉,是设计潜在杀利什曼原虫候选物的优势骨架,这不仅是因为它们具有生成高活性和选择性化合物的多功能性,还因为它们与明确的生物学靶点相关。这些事实使得开发针对寄生虫存活关键方面的安全杀利什曼原虫剂成为可能。本综述总结了基于4-氨基喹啉的杀利什曼原虫剂的最新实例,重点分析两个基本方面:(i)结构-性质关系以确定关键药效团;(ii)作用模式,重点关注寄生虫存活中的关键靶点(线粒体电位去极化、在巨噬细胞溶酶体中的蓄积以及宿主细胞的免疫刺激)。利用这些信息,我们旨在为感兴趣的研究人员提供有用的指导方针,以开展基于4-氨基喹啉的选择性和强效杀利什曼原虫剂的药物发现和开发过程。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e7e6/11841433/08118bde99d6/fchem-12-1527946-g023.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e7e6/11841433/5d3c6244340f/fchem-12-1527946-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e7e6/11841433/37df95f7240a/fchem-12-1527946-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e7e6/11841433/68c07266de63/fchem-12-1527946-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e7e6/11841433/d1c7f935ee53/fchem-12-1527946-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e7e6/11841433/099219d849a9/fchem-12-1527946-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e7e6/11841433/5306f7f4681f/fchem-12-1527946-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e7e6/11841433/99e29010847b/fchem-12-1527946-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e7e6/11841433/6107bbb0f66b/fchem-12-1527946-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e7e6/11841433/9bfdaec4eaac/fchem-12-1527946-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e7e6/11841433/0b064aea5266/fchem-12-1527946-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e7e6/11841433/14f4fdc26825/fchem-12-1527946-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e7e6/11841433/75ccf86ee842/fchem-12-1527946-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e7e6/11841433/a1f33e8703ad/fchem-12-1527946-g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e7e6/11841433/1baaf2184732/fchem-12-1527946-g014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e7e6/11841433/e51278c2b070/fchem-12-1527946-g015.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e7e6/11841433/cb26be700bbf/fchem-12-1527946-g016.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e7e6/11841433/30e6934ac6df/fchem-12-1527946-g017.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e7e6/11841433/4a6b87a89871/fchem-12-1527946-g018.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e7e6/11841433/256c0a1c1849/fchem-12-1527946-g019.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e7e6/11841433/45a2b0d4bfe0/fchem-12-1527946-g020.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e7e6/11841433/a0e01652d3ff/fchem-12-1527946-g021.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e7e6/11841433/5e638fd5864e/fchem-12-1527946-g022.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e7e6/11841433/08118bde99d6/fchem-12-1527946-g023.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e7e6/11841433/5d3c6244340f/fchem-12-1527946-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e7e6/11841433/37df95f7240a/fchem-12-1527946-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e7e6/11841433/68c07266de63/fchem-12-1527946-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e7e6/11841433/d1c7f935ee53/fchem-12-1527946-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e7e6/11841433/099219d849a9/fchem-12-1527946-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e7e6/11841433/5306f7f4681f/fchem-12-1527946-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e7e6/11841433/99e29010847b/fchem-12-1527946-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e7e6/11841433/6107bbb0f66b/fchem-12-1527946-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e7e6/11841433/9bfdaec4eaac/fchem-12-1527946-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e7e6/11841433/0b064aea5266/fchem-12-1527946-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e7e6/11841433/14f4fdc26825/fchem-12-1527946-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e7e6/11841433/75ccf86ee842/fchem-12-1527946-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e7e6/11841433/a1f33e8703ad/fchem-12-1527946-g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e7e6/11841433/1baaf2184732/fchem-12-1527946-g014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e7e6/11841433/e51278c2b070/fchem-12-1527946-g015.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e7e6/11841433/cb26be700bbf/fchem-12-1527946-g016.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e7e6/11841433/30e6934ac6df/fchem-12-1527946-g017.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e7e6/11841433/4a6b87a89871/fchem-12-1527946-g018.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e7e6/11841433/256c0a1c1849/fchem-12-1527946-g019.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e7e6/11841433/45a2b0d4bfe0/fchem-12-1527946-g020.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e7e6/11841433/a0e01652d3ff/fchem-12-1527946-g021.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e7e6/11841433/5e638fd5864e/fchem-12-1527946-g022.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e7e6/11841433/08118bde99d6/fchem-12-1527946-g023.jpg

相似文献

[1]
4-Aminoquinoline as a privileged scaffold for the design of leishmanicidal agents: structure-property relationships and key biological targets.

Front Chem. 2025-1-29

[2]
[Development of antituberculous drugs: current status and future prospects].

Kekkaku. 2006-12

[3]
Folic acid supplementation and malaria susceptibility and severity among people taking antifolate antimalarial drugs in endemic areas.

Cochrane Database Syst Rev. 2022-2-1

[4]
4-Aminoquinoline-based compounds as antileishmanial agents that inhibit the energy metabolism of Leishmania.

Eur J Med Chem. 2019-7-5

[5]
Naphthoquinone as a New Chemical Scaffold for Leishmanicidal Inhibitors of GSK-3.

Biomedicines. 2022-5-14

[6]
4-Aminoquinoline: a comprehensive review of synthetic strategies.

Front Chem. 2025-4-1

[7]
Molecular Targets for Chalcones in Antileishmanial Drug Discovery.

Mini Rev Med Chem. 2023

[8]
In vitro leishmanicidal activity and theoretical insights into biological action of ruthenium(II) organometallic complexes containing anti-inflammatories.

Biometals. 2018-10-4

[9]
Natural products derived steroids as potential anti-leishmanial agents; disease prevalence, underlying mechanisms and future perspectives.

Steroids. 2023-5

[10]
Exploring diverse frontiers: Advancements of bioactive 4-aminoquinoline-based molecular hybrids in targeted therapeutics and beyond.

Eur J Med Chem. 2024-1-15

引用本文的文献

[1]
Application of nano and microformulations to improve the leishmanicidal response of quinoline compounds: a brief review.

Front Chem. 2025-7-25

[2]
High-throughput screening identifies novel chemical scaffolds targeting Leishmania donovani parasites.

World J Microbiol Biotechnol. 2025-7-4

[3]
Current developments of metal- and metalloid-based quinoline compounds as leishmanicidal agents.

Front Chem. 2025-5-30

[4]
A comprehensive revision on the use of quinoline antimalarial drugs as leishmanicidal agents.

Front Chem. 2025-5-30

[5]
4-Aminoquinoline: a comprehensive review of synthetic strategies.

Front Chem. 2025-4-1

本文引用的文献

[1]
Structure-Activity Relationship Studies of 9-Alkylamino-1,2,3,4-tetrahydroacridines against () Promastigotes.

Pharmaceutics. 2023-2-16

[2]
Promastigote-to-Amastigote Conversion in spp.-A Molecular View.

Pathogens. 2022-9-15

[3]
Efficacy Evaluation of 10-Hydroxy Chondrofoline and Tafenoquine against (HTD).

Pharmaceuticals (Basel). 2022-8-15

[4]
Synthesis and biological activity of novel 4-aminoquinoline/1,2,3-triazole hybrids against Leishmania amazonensis.

Biomed Pharmacother. 2021-9

[5]
Structural Evolution and Translational Potential for Agonists and Antagonists of Endosomal Toll-like Receptors.

J Med Chem. 2021-6-24

[6]
Toll-like receptor-7/8 agonist kill Leishmania amazonensis by acting as pro-oxidant and pro-inflammatory agent.

J Pharm Pharmacol. 2021-8-12

[7]
Scaffold-Hopping Strategy on a Series of Proteasome Inhibitors Led to a Preclinical Candidate for the Treatment of Visceral Leishmaniasis.

J Med Chem. 2021-5-13

[8]
Chloroquine-Induced Accumulation of Autophagosomes and Lipids in the Endothelium.

Int J Mol Sci. 2021-2-27

[9]
Macrophages as host, effector and immunoregulatory cells in leishmaniasis: Impact of tissue micro-environment and metabolism.

Cytokine X. 2020-10-12

[10]
Effect of immunosuppressants on the parasite load developed in, and immune response to, visceral leishmaniasis: A comparative study in a mouse model.

PLoS Negl Trop Dis. 2021-2

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索