Suppr超能文献

利用人工智能预测和管理患有多种疾病的患者的并发症:一项文献综述。

Leveraging Artificial Intelligence to Predict and Manage Complications in Patients With Multimorbidity: A Literature Review.

作者信息

Chaparala Sai Praneeth, Pathak Kesha D, Dugyala Rohit Rao, Thomas Joel, Varakala Sai Prashanthi

机构信息

Internal Medicine, Gayatri Vidya Parishad Institute of Health Care and Medical Technology, Visakhapatnam, IND.

Medicine, Gujarat Adani Institute of Medical Sciences, Bhuj, IND.

出版信息

Cureus. 2025 Jan 21;17(1):e77758. doi: 10.7759/cureus.77758. eCollection 2025 Jan.

Abstract

Artificial intelligence (AI) is revolutionizing healthcare by improving diagnostic accuracy, streamlining treatment protocols, and augmenting patient care, especially in the management of multimorbidity. This review assesses the applications of AI in forecasting and controlling problems in multimorbid patients, emphasizing predictive analytics, real-time data integration, and enhancements in diagnostics. Utilizing extensive datasets from electronic health records and medical imaging, AI models facilitate early complication prediction and prompt therapies in diseases such as cancer, cardiovascular disorders, and diabetes. Notable developments encompass AI systems for the diagnosis of lung and breast cancer, markedly decreasing false positives and minimizing superfluous follow-ups. A comprehensive literature search was performed via PubMed and Google Scholar, applying Boolean logic with keywords such as "artificial intelligence", "multimorbidity", "predictive analytics", "machine learning", and "diagnosis". Articles published in English from January 2010 to December 2024, encompassing original research, systematic reviews, and meta-analyses regarding the use of AI in managing multimorbidity and healthcare decision-making, were included. Studies not pertinent to therapeutic applications, devoid of outcome measurements, or restricted to editorials were discarded. This review emphasizes AI's capacity to augment diagnostic precision and boost clinical results while also identifying substantial hurdles, including data bias, ethical issues, and the necessity for rigorous validation and longitudinal research to guarantee sustainable integration in clinical environments. This review's limitations encompass the possible exclusion of pertinent studies due to language and publication year constraints, as well as the disregard for grey literature, potentially constraining the comprehensiveness of the findings.

摘要

人工智能(AI)正在通过提高诊断准确性、简化治疗方案和加强患者护理来彻底改变医疗保健,尤其是在多重疾病的管理方面。本综述评估了人工智能在预测和控制多重疾病患者问题方面的应用,强调预测分析、实时数据整合以及诊断方面的改进。利用来自电子健康记录和医学影像的大量数据集,人工智能模型有助于在癌症、心血管疾病和糖尿病等疾病中早期预测并发症并及时进行治疗。显著的进展包括用于诊断肺癌和乳腺癌的人工智能系统,显著减少假阳性并尽量减少不必要的后续检查。通过PubMed和谷歌学术进行了全面的文献检索,应用布尔逻辑,使用了“人工智能”、“多重疾病”、“预测分析”、“机器学习”和“诊断”等关键词。纳入了2010年1月至2024年12月以英文发表的文章,包括关于人工智能在管理多重疾病和医疗保健决策中的应用的原始研究、系统评价和荟萃分析。与治疗应用无关、缺乏结果测量或仅限于社论的研究被排除。本综述强调了人工智能提高诊断精度和改善临床结果的能力,同时也指出了重大障碍,包括数据偏差、伦理问题以及进行严格验证和纵向研究以确保在临床环境中可持续整合的必要性。本综述的局限性包括可能由于语言和出版年份限制而排除相关研究,以及忽视灰色文献,这可能会限制研究结果的全面性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7850/11840652/2057944f12be/cureus-0017-00000077758-i01.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验